已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(1)求x0

已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(1)求x0

题型:解答题难度:一般来源:黄冈模拟
已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且对于任意正整数n,有an=
1
f(n)
bn=f(
1
2n
)+1
,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比较
4
3
Sn
与Tn的大小关系,并给出证明;
(3)在(2)的条件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
对任意不小于2的正整数n都成立,求x的取值范围.
答案
(1)令x1=x2=0⇒f(x0)=-f(0).又令x1=1,x2=0,f(1)=-f(0).
∴f(x0)=f(1),由函数f(x)单调性知,x0=1.
(2)由(1)知,f(x1+x2)=f(x1)+f(x2)+f(1)=f(x1)+f(x2)+1,
由x1,x2的任意性,令x1=n,x2=1,f(n+1)=f(n)+f(1)+1=f(n)+2,
∴f(n)=2n-1.(n∈N*).
an=
1
2n-1

又∵f(1)=f(
1
2
+
1
2
)=f(
1
2
)+f(
1
2
)+f(1)⇒f(
1
2
)=0⇒b1=f(
1
2
)+1=1

又∵f(
1
2n
)=f(
1
2n+1
+
1
2n+1
)=2f(
1
2n+1
)+1

2bn+1=2f(
1
2n+1
)+2=f(
1
2n
)+1=bn

bn=(
1
2
)n-1

由数列求和方法知:Sn=
1
2
(1-
1
2n+1
)
Tn=
2
3
[1-(
1
4
)
n
]
.∴
4
3
Sn-Tn=
2
3
[(
1
4
)
n
-
1
2n+1
]

∵4n=(3+1)n=Cnn3n+Cnn-13n-1+…+Cn13+Cn0≥3n+1>2n+1,∴
4
3
SnTn

(3)令F(n)=an+1+an+2+…+a2n⇒F(n+1)-F(n)=a2n+1+a2n+2-an+1=
1
4n+1
+
1
4n+3
-
1
2n+1
>0
(通分易证)∴当n≥2时,F(n)>F(n-1)>…>F(2)=a3+a4=
12
35

12
35
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
⇒log
1
2
(x+1)-log
1
2
(9x2-1)<2

解此不等式,所以x的取值范围为(-
5
9
,-
1
3
)∪(
1
3
,1)
举一反三
已知函数f(x)=sin(x+a)+


3
cos(x-a),其中0≤a<π,且对于任意实数x,f(x)=f(-x)恒成立.
(1)求a的值;
(2)求函数f(x)的最大值和单调递增区间.
题型:解答题难度:一般| 查看答案
已知函数f(x)的定义域为R,对任意x1,x2都满足f(x1+x2)=f(x1)+f(x2),当x>0时f(x)>0.
(1)试判断f(x)的奇偶性和单调性;
(2)当θ∈[0,
π
2
]
时,f(cos2θ-3)+f(4m-2mcosθ)>0对所有的θ均成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
设函数f(x)=(x2+1)(x+a)为奇函数,则a=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=x|x-a|,a∈R是常数.
(1)若a=1,求y=f(x)在点P(-1,f(-1))处的切线;
(2)是否存在常数a,使f(x)<2x+1对任意x∈(-∞,2)恒成立?若存在,求常数a的取值范围;若不存在,简要说明理由.
题型:解答题难度:一般| 查看答案
已知A(1,f"(1))是函数y=f(x)的导函数图象上的一点,点B为(x,ln(x+1)),向量


a
=(1,1)
,令f(x)=


AB


a

(1)求函数y=f(x)的表达式;
(2)若x>0,证明:f(x)>
2x2+3x-10
2(x+2)

(3)若x∈[-1,1]时,不等式
1
2
x2≤f(x2)+m2-
9
2
m-3
都恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.