奇函数f(x)的定义域为[-2,2],若f(x)在[0,2]上单调递减,且f(1+m)+f(m)<0,则实数m的取值范围是______.

奇函数f(x)的定义域为[-2,2],若f(x)在[0,2]上单调递减,且f(1+m)+f(m)<0,则实数m的取值范围是______.

题型:填空题难度:一般来源:通州区一模
奇函数f(x)的定义域为[-2,2],若f(x)在[0,2]上单调递减,且f(1+m)+f(m)<0,则实数m的取值范围是______.
答案
∵函数函数f(x)定义域在[-2,2]上的奇函数,
则由f(1+m)+f(m)<0,可得f(1+m)<-f(m)=f(-m)
又根据条件知函数f(x)在定义域上单调递减,
∴-2≤-m<1+m≤2
解可得,-
1
2
<m≤1.
故答案为:(-
1
2
,1]
举一反三
设f(x)=x3-
x2
2
-2x+5.
(1)求f(x)的单调区间;
(2)当x∈[1,2]时,f(x)<m恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
函数f(x)=ax3+blog2(x+


x2+1
)+2
在(-∞,0)上有最小值-5,a,b为常数,则f(x)在(0,+∞)上的最大值为(  )
A.9B.5C.7D.,6
题型:单选题难度:简单| 查看答案
已知f(x)是R上的偶函数,且f(2)=0,g(x)是R上的奇函数,且对于x∈R,都有g(x)=f(x-1),求f(2002)的值.
题型:解答题难度:一般| 查看答案
已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a、b∈[-1,1],a+b≠0时,有
f(a)+f(b)
a+b
>0.判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.
题型:解答题难度:一般| 查看答案
与曲线y=
1
x-1
关于原点对称的曲线为(  )
A.y=
1
1+x
B.y=-
1
1+x
C.y=
1
1-x
D.y=-
1
1-x
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.