定义在R上的偶函数f(x)在[0,+∞]上递增,f(13)=0,则满足不等式f(log18x)>0的x的取值范围是______.

定义在R上的偶函数f(x)在[0,+∞]上递增,f(13)=0,则满足不等式f(log18x)>0的x的取值范围是______.

题型:填空题难度:简单来源:不详
定义在R上的偶函数f(x)在[0,+∞]上递增,f(
1
3
)=0,则满足不等式f(log
1
8
x)
>0的x的取值范围是______.
答案
由题意,函数f(x)是偶函数,且f(
1
3
)=0,
f(log
1
8
x)
>0
f(|log
1
8
x|)>f(
1
3
)

∵定义在R上的偶函数f(x)在[0,+∞)上递增,
|log
1
8
x|>
1
3

log
1
8
x>
1
3
log
1
8
x<-
1
3

0<x<
1
2
或x>2
∴x的取值范围是(0,
1
2
)∪(2,+∞)

故答案为:(0,
1
2
)∪(2,+∞)
举一反三
我们把具有以下性质的函数f(x)称为“好函数”:对于在f(x)定义域内的任意三个数a,b,c,若这三个数能作为三角形的三边长,则f(a),f(b),f(c)也能作为三角形的三边长.现有如下一些函数:
f(x)=


x

f(x)=1-x,x∈(0,
1
2
)

③f(x)=ex,x∈(0,1)
④f(x)=sinx,x∈(0,π).
其中是“好函数”的序号有______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=
x2+2x+m
x
,若对任意x∈[1,+∞),f(x)>0恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x+1)是偶函数,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)>0恒成立,设a=f(-
1
2
),b=f(2),c=f(3)
,则a,b,c的大小关系为(按从小到大)______.
题型:填空题难度:简单| 查看答案
若关于x的不等式x2+
1
2
x-(
1
2
)n≥0
对任意n∈N*在x∈(-∞,λ]上恒成立,则实常数λ的取值范围是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=3x2-6x-5.
(1)求不等式f(x)>4的解集;
(2)设g(x)=f(x)-2x2+mx,其中m∈R,求g(x)在区间[l,3]上的最小值;
(3)若对于任意的a∈[1,2],关于x的不等式f(x)≤x2-(2a+6)x+a+b在区间[1,3]上恒成立,求实数b的取值范围.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.