已知定义在R上的单调函数f(x),存在实数x0使得对任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(1)求x0的值

已知定义在R上的单调函数f(x),存在实数x0使得对任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(1)求x0的值

题型:解答题难度:一般来源:广州三模
已知定义在R上的单调函数f(x),存在实数x0使得对任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且对任意的正整数n.有an=
1
f(n)
bn=f(
1
2n
)+1
,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比较
4
3
Sn
与Tn的大小关系,并给出证明.
答案
(1)令x1=x2=0,得f(0)=f(x0)+2f(0),∴f(x0)=-f(0).①
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0).②
由①②得   f(x0)=f(1).∴f(x)为单调函数,
∴x0=1.
(2)由(1)得f(x1+x2)=f(x1)+f(x2)+f(1)=f(x1)+f(x2)+1.
∵f(n+1)=f(n)+f(1)+1=f(n)+2,f(1)=1,∴f(n)=2n-1.(n∈Z*
an=
1
2n-1

又∵f(1)=f(
1
2
+
1
2
)=f(
1
2
)+f(
1
2
)+f(1)

f(
1
2
)=0,b1=f(
1
2
)+1

f(
1
2n
)=f(
1
2n+1
+
1
2n+1
)=f(
1
2n+1
)+f(
1
2n+1
)+f(1)=2f(
1
2n+1
)+1

2bn+1=2f(
1
2n+1
)+2=f(
1
2n
)+1=bn

bn=(
1
2
)n-1

Sn=
1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)
=
1
2
(
1
1
-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)

Tn=(
1
2
)0(
1
2
)1+(
1
2
)1(
1
2
)2+…+(
1
2
)n-1(
1
2
)n=
1
2
+(
1
2
)3+…+(
1
2
)2n-1

=
1
2
[1-(
1
4
)
n
]
1-
1
4
=
2
3
[1-(
1
4
)n]

4
3
Sn-Tn=
2
3
(1-
1
2n+1
)-
2
3
[1-(
1
4
)n]=
2
3
[(
1
4
)n-
1
2n+1
]

∵4n=(3+1)n=Cnn3n+Cnn-13n-1+…+Cn13+Cn0≥3n+1>2n+1,
4
3
Sn-Tn=
3
2
(
1
4n
-
1
2n+1
)<0

4
3
SnTn
举一反三
设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则(  )
A.f(x1)+f(x2)+f(x3)>0B.f(x1)+f(x2)+f(x3)<0
C.f(x1)+f(x2)+f(x3)=0D.f(x1)+f(x2)>f(x3
题型:单选题难度:一般| 查看答案
设函数y=f(x)是定义在R上的奇函数,且满足f(x-2)=-f(x)对一切x∈R都成立,又当x∈[-1,1]时,f(x)=x3,则下列四个命题:①函数y=f(x)是以4为周期的周期函数;②当x∈[1,3]时,f(x)=(2-x)3; ③函数y=f(x)的图象关于x=1对称;④函数y=f(x)的图象关于(2,0)对称.其中正确的命题是 ______.
题型:填空题难度:一般| 查看答案
已知二次函数f(x)满足f(-1)=0,且x≤f(x)≤
1
2
(x2+1)对一切实数x恒成立.
(1)求f(1);
(2)求f(x)的解析表达式.
题型:解答题难度:一般| 查看答案
函数f(x)=3x+sinx+1(x∈R),若f(t)=2,则f(-t)的值为______.
题型:填空题难度:一般| 查看答案
已知函数f(x+1)为奇函数,函数f(x-1)为偶函数,且f(0)=2,则f(4)=______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.