定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2).则当1≤s≤

定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2).则当1≤s≤

题型:单选题难度:一般来源:双流县三模
定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2).则当1≤s≤4时,
t
s
的取值范围是(  )
A.[-
1
2
,1)
B.[-
1
4
,1)
C.[-
1
2
,1]
D.[-
1
4
,1]
答案
解析:由f(x-1)的图象相当于f(x)的图象向右平移了一个单位
又由f(x-1)的图象关于(1,0)中心对称
知f(x)的图象关于(0,0)中心对称,
即函数f(x)为奇函数
得f(s2-2s)≤f(t2-2t),
从而t2-2t≤s2-2s,化简得(t-s)(t+s-2)≤0,
又1≤s≤4,
故2-s≤t≤s,从而
2
s
-1≤
t
s
≤1
,而
2
s
-1∈[-
1
2
,1]

t
s
∈[-
1
2
,1]

故选C.
举一反三
函数f(x)=ax3-x在(-∞,+∞)内是减函数,则(  )
A.a<1B.a<
1
3
C.a<0D.a≤0
题型:单选题难度:一般| 查看答案
已知函数f(x)=lnx+
a
x
-a(a∈R)

(I)求f(x)的单调区间;
(II)求证:不等式
1
lnx
-
1
x-1
1
2
对一切x∈(1,2)
恒成立.
题型:解答题难度:一般| 查看答案
定义在R上的函数f(x)满足:对任意的α,β∈R,总有f(α+β)-[f(α)+f(β)]=2011,则下列说法正确的是(  )
A.f(x)-1是奇函数B.f(x)+1是奇函数
C.f(x)+2011是奇函数D.f(x)-2011是奇函数
题型:单选题难度:简单| 查看答案
设f(x)是以4为周期的偶函数,且当x∈[0,2]时,f(x)=2x,则f(log215)=______.
题型:填空题难度:一般| 查看答案
函数y=f(x)是奇函数,当x<0时f(x)=3x-2,则f(5)=______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.