已知函数f(x)=x2-2acoskπ•lnx(k∈N*,a∈R且a>0).(1)讨论函数f(x)的单调性;(2)若k=2012,关于x的方程f(x)=2ax有

已知函数f(x)=x2-2acoskπ•lnx(k∈N*,a∈R且a>0).(1)讨论函数f(x)的单调性;(2)若k=2012,关于x的方程f(x)=2ax有

题型:解答题难度:一般来源:不详
已知函数f(x)=x2-2acoskπ•lnx(k∈N*,a∈R且a>0).
(1)讨论函数f(x)的单调性;
(2)若k=2012,关于x的方程f(x)=2ax有唯一解,求a的值;
(3)当k=2011时,证明:对一切x∈(0,+∞),都有
f(x)-x2
2a
1
ex
-
2
ex
成立.
答案
(1)由已知得x>0且f′(x)=2x-(-1)k
2a
x

当k是奇数时,f′(x)>0,则f(x)在(0,+∞)上是增函数;      
当k是偶数时,则f′(x)=2x-
2a
x
=
2(x+


a
)(x-


a
)
x

所以当x∈(0,


a
)
时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.
故当k是偶数时,f (x)在(0,


a
)
上是减函数,在(


a
,+∞)
上是增函数.
(2)若k=2012,则f(x)=x2-2alnx(k∈N*).
记g (x)=f (x)-2ax=x 2-2a xlnx-2ax,g′(x)=2x-
2a
x
-2a=
2
x
(x2-ax-a)

若方程f(x)=2ax有唯一解,即g(x)=0有唯一解;     
令g′(x)=0,得x2-ax-a=0.因为a>0,x>0,
所以x 1=
a-


a2+4a
2
<0
(舍去),x 2=
a+


a2+4a
2

当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)是单调递减函数;
当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)上是单调递增函数.
当x=x2时,g′(x2)=0,g(x)min=g(x2).
因为g(x)=0有唯一解,所以g(x2)=0.





g(x2)=0
g′(x2)=0





x22-2alnx2-2ax2=0
x22-ax 2-a=0

两式相减得alnx2+ax2-a=0,因为a>0,所以2lnx2+x2-1=0(*).
设函数h(x)=2lnx+x-1,
因为在x>0时,h (x)是增函数,所以h (x)=0至多有一解.
因为h (1)=0,所以方程(*)的解为x 2=1,从而解得a=
1
2

(3)当k=2011时,问题等价于证明xlnx>
x
ex
-
2
e
(x∈(0,+∞))

由导数可求φ(x)=xlnx(x∈(0,+∞))的最小值是-
1
e
,当且仅当x=
1
e
时取到,
m(x)=
x
ex
-
2
e
(x∈(0,+∞))
,则m′(x)=
1-x
ex

易得m(x)max=m(1)=-
1
e
,当且仅当x=1时取到,
从而对一切x∈(0,+∞),都有lnx>
1
ex
-
2
ex
成立.故命题成立.
举一反三
已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数
(I)求a的值;
(II)求λ的取值范围;
(III)若g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2-(c+1)x+c(c∈R).
(1)解关于x的不等式f(x)<0;
(2)当c=-2时,不等式f(x)>ax-5在(0,2)上恒成立,求实数a的取值范围;
(3)设g(x)=f(x)-ax,已知0<g(2)<1,3<g(3)<5,求g(4)的范围.
题型:解答题难度:一般| 查看答案
定义在R上的奇函数f(x),若当x<0时,f(x)=x2+1,则当x≥0时,f(x)=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.
①求函数的单调区间;
②求函数的极大值与极小值的差;
③当x∈[1,3]时,f(x)>1-4c2恒成立,求实数c的取值范围.
题型:解答题难度:一般| 查看答案
对于0≤m≤4的m,不等式x2+mx>4x+m-3恒成立,则x的取值范围是______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.