设a为实数,函数f(x)=2x2+(x-a)·|x-a|.(1)若f(0)≥1,求a的取值范围;(2)求f(x)的最小值;(3)设函数h(x)=f(x),x∈(

设a为实数,函数f(x)=2x2+(x-a)·|x-a|.(1)若f(0)≥1,求a的取值范围;(2)求f(x)的最小值;(3)设函数h(x)=f(x),x∈(

题型:解答题难度:简单来源:不详
设a为实数,函数f(x)=2x2+(x-a)·|x-a|.
(1)若f(0)≥1,求a的取值范围;
(2)求f(x)的最小值;
(3)设函数h(x)=f(x),x∈(a,+∞),直接写出(不需给出步骤)不等式h(x)≥1的解集.
答案

解析
解:(1)因为f(0)=-a|-a|≥1,所以-a>0,即a<0.由a2≥1知a≤-1.因此,a的取值范围为(-∞,-1].
(2)记f(x)的最小值为g(a).则有f(x)=2x2+(x-a)|x-a|

(ⅰ)当a≥0时,f(-a)=-2a2,由①②知f(x)≥-2a2,此时g(a)=-2a2.
(ⅱ)当a<0时,f()=a2.若x>a,则由①知f(x)≥a2;
若x≤a,则x+a≤2a<0,由②知f(x)≥2a2>a2.此时g(a)=a2.
综上,得g(a)=
(3)(ⅰ)当a∈(-∞,-]∪[,+∞)时,解集为(a,+∞);
(ⅱ)当a∈[-,)时,解集为[,+∞);
(ⅲ)当a∈(-,-)时,解集
为(a,]∪[,+∞).
举一反三
已知函数,且的解集为(-2,1)则函数的图象为( )



 
  
题型:单选题难度:简单| 查看答案
((12分)
已知二次函数满足条件
且方程有等根   
(1)求
(2)是否存在实数,使得函数在定义域为值域为。如果存在,求出的值;如果不存在,说明理由
题型:解答题难度:简单| 查看答案

.已知函数.
(Ⅰ)求证: 对于任意的()都有恒成立
(Ⅱ)若锐角满足,求.
(Ⅲ)若对于任意的恒成立,求的取值范围.
题型:解答题难度:简单| 查看答案
二次函数f(x)=ax2+bx+c的图象的开口向下,对称轴为x=1,方程 ax2+bx+c=0的两个解一个在区间(2,3)中,则下列判断正确的是
A.abc>0B.a+b+c<0C.a-b+c<0D.3b<2c

题型:单选题难度:简单| 查看答案
、已知二次函数y=f(x)的图像为开口向下的抛物线,且对任意x∈R都有f(1+x)=f(1-x).若向量,则满足不等式m的取值范围              。 
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.