已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=f(x

已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=f(x

题型:解答题难度:一般来源:深圳二模
已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=
f(x)
x
-4lnx
的零点个数.
答案
(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},
∴f(x)=a(x+1)(x-3)=a[(x-1)2-4](a>0)
∴f(x)min=-4a=-4
∴a=1
故函数f(x)的解析式为f(x)=x2-2x-3
(2)g(x)=
f(x)
x
-4lnx
=x-
3
x
-4lnx-2(x>0),
∴g′(x)=
(x-1)(x-3)
x2

x,g′(x),g(x)的取值变化情况如下:
举一反三
题型:解答题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
题型:单选题难度:一般| 查看答案
题型:单选题难度:简单| 查看答案
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

x(0,1)1(1,3)3(3,+∞)
g′(x)+0-0+
g(x)单调增加极大值单调减少极小值单调增加
已知函数f(x)=x2-(a+1)x+b,
(1)若f(x)<0的解集是(-5,2),求a,b的值;
(2)若a=b,解关于x的不等式f(x)>0.
设a为正实数,二次函数f(x)=ax2-4bx+4c有两个属于区间[2,3]的实数根.
(1)求证:存在以a、b、c为边长的三角形;
(2)求证:
a
a+c
+
b
b+a
c
b+c
若函数y=x2-4x+6的定义域、值域都是[2,2b](b>1),则(  )
A.b=
3
2
B.b∈[
3
2
,+∞)
C.b∈(1,
3
2
D.b∈(
3
2
,+∞)
如果函数f(x)=x2-ax-3在区间(-∞,4]上单调递减,则实数a满足的条件是(  )
A.a≥8B.a≤8C.a≥4D.a≥-4
如果方程(x-1)(x2-2x+m)=0的三个根可以作为一个三角形的三条边长,那么实数m的取值范围是(  )
A.0≤m≤1B.
3
4
<m≤1
C.
3
4
≤m≤1
D.m≥
3
4