(13分)(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点
题型:解答题难度:一般来源:不详
(13分)(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l. (Ⅰ) 求a、b的值,并写出切线l的方程; (Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围. |
答案
(Ⅰ)x﹣y﹣2=0(Ⅱ)(﹣,0) |
解析
试题分析:(I) 利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f"(2)=g"(2)=1.即为关于a、b的方程,解方程即可. (II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2﹣3x+2﹣m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x﹣1)恒成立问题转化为求函数f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围. 解:(I) f"(x)=3x2+4ax+b,g"(x)=2x﹣3. 由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l. 故有f(2)=g(2)=0,f"(2)=g"(2)=1. 由此得,解得, 所以a=﹣2,b=5..切线的方程为x﹣y﹣2=0. (II)由(I)得f(x)=x3﹣4x2+5x﹣2,所以f(x)+g(x)=x3﹣3x2+2x. 依题意,方程x(x2﹣3x+2﹣m)=0,有三个互不相等的实根0,x1,x2, 故x1,x2是x2﹣3x+2﹣m=0的两相异实根. 所以△=9﹣4(2﹣m)>0,解得m>﹣. 又对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立, 特别地取x=x1时,f(x1)+g(x1)<m(x1﹣1)成立,得m<0. 由韦达定理得x1+x2=3>0,x1x2=2﹣m>0.故0<x1<x2. 对任意的x∈[x1,x2],x﹣x2≤0,x﹣x1≥0,x>0. 则f(x)+g(x)﹣mx=x(x﹣x1)(x﹣x2)≤0,又f(x1)+g(x1)﹣mx1=0. 所以f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值为0. 于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立, 综上得:实数m的取值范围是(﹣,0). 点评:本题主要考查函数,导数,不等式等基础知识,同时考查综合运用数学知识进行推理论证的能立,以及函数与方程和特殊与一般的思想. |
举一反三
(5分)(2011•陕西)方程|x|=cosx在(﹣∞,+∞)内( )A.没有根 | B.有且仅有一个根 | C.有且仅有两个根 | D.有无穷多个根 |
|
(5分)(2011•天津)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是( )A.(﹣1,1]∪(2,+∞) | B.(﹣2,﹣1]∪(1,2] | C.(﹣∞,﹣2)∪(1,2] | D.[﹣2,﹣1] |
|
[2014·汉口模拟]设函数y=x3与y=x-2的图象的交点为(x0,y0),则x0所在的区间是( )A.(0,1) | B.(1,2) | C.(2,3) | D.(3,4) |
|
[2013·湖北黄冈一模]若定义在R上的偶函数f(x)满足f(x+2)=f(x),且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|的解有( ) |
[2014·湖南六校联考]设x1,x2是方程ln|x-2|=m(m为实数)的两根,则x1+x2的值为( ) |
最新试题
热门考点