将进货单价为8元的商品按单价10元销售,每天可卖出100个.若该商品的单价每涨1元,则每天销售量就减少10个.要使利润最大,商品的销售单价为______.
题型:填空题难度:一般来源:不详
将进货单价为8元的商品按单价10元销售,每天可卖出100个.若该商品的单价每涨1元,则每天销售量就减少10个.要使利润最大,商品的销售单价为______. |
答案
假设商品的价格为x元/个, 由题意可得获得利润f(x)=(x-8)[100-10(x-10)]=-10x2+280x-1600=-10(x-14)2+360, 可知:当且仅当x=14时,获得最大利润360元. 故答案为14. |
举一反三
某工厂2009年生产某种产品2万件,计划从2010年起每年比上一年增长20%,这个工厂年产量超过12万的最早的一年是(注:lg2=0.3010,lg3=0.4771)( )A.2018年 | B.2019年 | C.2020年 | D.2021年 |
|
某渔业公司今年初用98万元购进一艘渔船用于捕捞.第一年需各种费用12万元,从第二年开始每年包括维修费在内,所需费用均比上一年增加4万元,该船捕捞总收入预计每年50万元. (1)该船捕捞几年开始盈利(即累计总收入减去成本及所有费用之差为正)? (2)该船捕捞若干年后,处理方案有两种: ①年平均盈利达到最大值时,以26万元的价格将船卖出; ②累计盈利总额达到最大时,以8万元的价格将船卖出. 问哪一种方案较为合算?并说明理由. |
已知函数 ,函数 (1)判断方程的零点个数; (2)解关于的不等式,并用程序框图表示你的求解过程. |
最新试题
热门考点