某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若
题型:江苏高考真题难度:来源:
某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元;若是二等品则亏损2万元.设生产各件产品相互独立, (Ⅰ)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列; (Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率。 |
答案
解:(Ⅰ)由题设知,X的可能取值为10,5,2,-3,且
由此得X的分布列为
(Ⅱ)设生产的4件甲产品中一等品有n件,则二等品有(4-n)件, 由题设知4n-(4-n)≥10,解得, 又n∈N,得n=3或n=4, 所以, 故所求概率为0.8192。 |
举一反三
在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3 件,求: (1)取出的3件产品中一等品件数X的分布列和数学期望; (2)取出的3件产品中一等品件数多于二等品件数的概率。 |
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为,甲、乙、丙三位同学每人购买了一瓶该饮料, (Ⅰ)求甲中奖且乙、丙都没有中奖的概率; (Ⅱ)求中奖人数ξ的分布列及数学期望Eξ。 |
随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ, (1)求ξ的分布列; (2)求1件产品的平均利润(即ξ的数学期望); (3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少? |
某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别。公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元。令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力, (1)求X的分布列; (2)求此员工月工资的期望。 |
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验。选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙。 (1)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望; (2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表: |
品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 | 品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
最新试题
热门考点
|