如图所示,某池塘中浮萍蔓延的面积y(m2)与时间t(月)的关系y=at,有以下叙述:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30m2;③浮萍从4

如图所示,某池塘中浮萍蔓延的面积y(m2)与时间t(月)的关系y=at,有以下叙述:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30m2;③浮萍从4

题型:填空题难度:一般来源:不详
如图所示,某池塘中浮萍蔓延的面积y(m2)与时间t(月)的关系y=at,有以下叙述:
①这个指数函数的底数为2;
②第5个月时,浮萍面积就会超过30m2
③浮萍从4m2蔓延到12m2需要经过1、5个月;
④浮萍每月增加的面积都相等;
⑤若浮萍蔓延到2m2,3m2,6m2所经过的时间分别为t1,t2,t3,则t1+t2=t3
其中正确的序号是______.
答案
∵点(1,2)在函数图象上,
∴2=a1∴a=2,故①正确;
∴函数y=2t在R上是增函数,且当t=5时,y=32故②正确,
4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;
如图所示,1-2月增加2m2,2-3月增加4m2,故④不正确.
对⑤由于:2=2 x1,3=2 x2,6=2 x3
∴x1=1,x2=log23,x3=log26
又因为1+log23=log22+log23=log22×3=log26
∴若浮萍蔓延到2m2、3m2、6m2所经过的时间分别为x1,x2,x3,则x1+x2=x3成立.
故答案为:①②⑤.
举一反三
如图,在等腰梯形OABC中,A(2,2),B(5,2).直线x=t(t>0)由点O向点C移动,至点C完毕,记扫描梯形时所得直线x=t左侧的图形面积为f(t).试求f(t)的解析式,并画出y=f(t)的图象.
题型:解答题难度:一般| 查看答案
如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上.
(1)求梯形ABCD的周长y与腰长x间的函数解析式,并求出它的定义域;
(2)求梯形ABCD的周长y的最大值.
题型:解答题难度:一般| 查看答案
下列不等式正确的是(  )
A.1.72.5>1.73B.0.8-0.1>0.8-0.2
C.1.70.3>0.93.1D.23>32
题型:单选题难度:简单| 查看答案
函数f(x)=ax-1+3的图象一定过定点P,P点的坐标是______.
题型:填空题难度:一般| 查看答案
函数f(x)=a2x-180+2012(a>0且a≠1)的图象恒过定点______.
题型:填空题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.