给出三个等式:f(xy)=f(x)f(y),f(x+y)=f(x)f(y),f(x+y)=f(x)+f(y),下列函数中不满足任何一个等式的是( )A.y=x
题型:单选题难度:简单来源:不详
给出三个等式:f(xy)=f(x)f(y),f(x+y)=f(x)f(y),f(x+y)=f(x)+f(y),下列函数中不满足任何一个等式的是( )A.y=x2 | B.y=2x | C.y=3x | D.y=log5x |
|
答案
对于选项A,f(x)=x2,满足f(xy)=(xy)2=x2y2=f(x)f(y); 对于选项B,f(x)=2x,满足f(x+y)=2x+y=2x•2y=f(x)f(y); 对于选项C,f(x)=3x,满足f(x+y)=3(x+y)=3x+3y=f(x)+f(y); 由排除法可知,不满足任何一个等式的是y=log5x. 故选D. |
举一反三
设a>1,解关于x的不等式loga(2x2-3x+1)>loga(x2+2x-3). |
计算:27-2log23•log2+lg4+2lg5=______. |
(log52+log252)(log25+log85)=______. |
2log2+()-+lg25+2lg2-(log23)(log916)+(-1)lg1=______. |
a=+,则实数a的取值区间应为( )A.(1,2) | B.(2,3) | C.(3,4) | D.(4,5) |
|
最新试题
热门考点