已知函数f(x)=sin(2x+π6)+sin(2x-π6)+2cos2x.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)求使f(x)≥2的x的取值范围.

已知函数f(x)=sin(2x+π6)+sin(2x-π6)+2cos2x.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)求使f(x)≥2的x的取值范围.

题型:解答题难度:一般来源:不详
已知函数f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+2cos2x

(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)求使f(x)≥2的x的取值范围.
答案
(Ⅰ)∵sin(2x+
π
6
)
=sin2xcos
π
6
+cos2xsin
π
6

sin(2x-
π
6
)
=sin2xcos
π
6
-cos2xsin
π
6
,cos2x=
1
2
(cos2x+1)

f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+2cos2x

=sin2xcos
π
6
+cos2xsin
π
6
+sin2xcos
π
6
-cos2xsin
π
6
+cos2x+1

=


3
sin2x+cos2x+1
=2sin(2x+
π
6
)+1

可得f(x)的最小正周期T=
|ω|
=
2

-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
(k∈Z),解之得-
π
3
+kπ≤x≤
π
6
+kπ
(k∈Z),
∴函数f(x)的递增区间是[-
π
3
+kπ,
π
6
+kπ]
,k∈Z.
(Ⅱ)由f(x)≥2,得2sin(2x+
π
6
)+1≥2
(k∈Z),即sin(2x+
π
6
)≥
1
2

根据正弦函数的图象,可得
π
6
+2kπ≤2x+
π
6
6
+2kπ(k∈Z),
解之得kπ≤x≤kπ+
π
3
(k∈Z),
∴使不等式f(x)≥2成立的x取值范围是{x|kπ≤x≤kπ+
π
3
,k∈Z}
举一反三
(文)已知函数f(x)=(


3
sinωx+cosωx)cosωx-
1
2
(ω>0)
的最小正周期为4π.
(1)求ω的值;
(2)求f(x)的单调递增区间.
题型:解答题难度:一般| 查看答案
若△ABC能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.不能确定
题型:不详难度:| 查看答案
设平面向量


m
=(cos2
x
2


3
sinx),


n
=(2,1),函数f(x)=


m


n

(Ⅰ)当x∈[-
π
3
π
2
]时,求函数f(x)的取值范围;
(Ⅱ)当f(α)=
13
5
,且-
3
<α<
π
6
时,求sin(2α+
π
3
)的值.
题型:解答题难度:一般| 查看答案
如图,在直角坐标系xOy中,角α的顶点是原点,始边与x轴正半轴重合,终边交单位圆于点A,且α∈(
π
3
π
2
)
.将角α的终边按逆时针方向旋转
π
6
,交单位圆于点B.记A(x1,y1),B(x2,y2).
(Ⅰ)若x1=
1
4
,求x2
(Ⅱ)分别过A,B作x轴的垂线,垂足依次为C,D.记△AOC的面积为S1,△BOD的面积为S2.若S1=S2,求角α的值.
题型:不详难度:| 查看答案
在△ABC中,a,b,c是角A,B,C对应的边,向量


m
=(a+b,c),


n
=(a+b,-c),且


m


n
=(


3
+2)ab.
(1)求角C;
(2)函数f(x)=2sin(A+B)cos2(ωx)-cos(A+B)sin(2ωx)-
1
2
(ω>0)的相邻两个极值的横坐标分别为x0-
π
2
、x0,求f(x)的单调递减区间.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.