已知函数f(x)=32sin2x-12(cos2x-sin2x)-1,x∈R,将函数f(x)向左平移π6个单位后得函数g(x),设△ABC三个角A、B、C的对边

已知函数f(x)=32sin2x-12(cos2x-sin2x)-1,x∈R,将函数f(x)向左平移π6个单位后得函数g(x),设△ABC三个角A、B、C的对边

题型:江西模拟难度:来源:
已知函数f(x)=


3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=


7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且


m
=(cosA,cosB)


n
=(1,sinA-cosAtanB)
,求


m


n
的取值范围.
答案
(Ⅰ)f(x)=


3
2
sin2x-
1
2
(cos2x-sin2x)-1
=


3
2
sin2x-
1
2
cos2x-1=sin(2x-
π
6
)-1
.…(1分)
f(C)=sin(2C-
π
6
)-1=0
,所以sin(2C-
π
6
)=1

因为2C-
π
6
∈(-
π
6
11π
6
)

所以2C-
π
6
=
π
2

所以C=
π
3
.…(3分)
由余弦定理知:a2+b2-2abcos
π
3
=7
,因sinB=3sinA,
所以由正弦定理知:b=3a.…(5分)
解得:a=1,b=3…(6分)
(Ⅱ)由题意可得g(x)=sin(2x+
π
6
)-1
,所以g(B)=sin(2B+
π
6
)-1=0
,所以sin(2B+
π
6
)=1

因为2B+
π
6
∈(
π
6
13π
6
)
,所以2B+
π
6
=
π
2
,即B=
π
6



m
=(cosA,


3
2
)


n
=(1,sinA-


3
3
cosA)

于是


m


n
=cosA+


3
2
(sinA-


3
3
cosA)=
1
2
cosA+


3
2
sinA=sin(A+
π
6
)
…(8分)
B=
π
6
∴A∈(0,
5
6
π)
,得 A+
π
6
∈(
π
6
,π)
…(10分)
sin(A+
π
6
)∈(0,1]
,即


m


n
∈(0,1]
.…(12分)
举一反三
已知函数f(x)=5


3
cosxsinx+5cos2x+1

(Ⅰ)求函数f(x)的周期及f(x)的最大值和最小值;
(Ⅱ)求f(x)在[0,π]上的单调递增区间.
题型:不详难度:| 查看答案
已知f(x)=


m


n
,其中
.
m
=(sinωx+cosωx,


3
cosωx)
.
n
=(cosωx-sinωx,2sinωx)
(ω>0).若f(x)图象中相邻的两条对称轴间的距离不小于π.
(I)求ω的取值范围;
(II)在△ABC中,a,b,c分别为角A,B,C的对边,a=


7
,S△ABC=


3
2
,当ω取最大值时,f(A)=1,求b,c的值.
题型:解答题难度:一般| 查看答案
化简tan70°cos10°(


3
tan20°-1)
题型:不详难度:| 查看答案
已知函数f(x)=sin2x+2


3
sinxcosx+sin(x+
π
4
)sin(x-
π
4
),x∈R

(1)求f(x)的最小正周期和值域;
(2)若x=x0(0≤x0
π
2
)
为f(x)的一个零点,求sin2x0的值.
题型:不详难度:| 查看答案
已知函数f(x)=2cos2x+cos(2x+
π
3

(1)在锐角△ABC中,a,b,c分别是角A,B,C的对边;若f(A)=-
1
2
,b=3
,sin(A+C)=
3
4
sinC,求△ABC的面积.
(2)若f(α)=


3
3
+1,0<α<
π
6
,求sin2α的值.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.