若△ABC中,A、B位其中两个内角,若sin2A=sin2B,则三角形为______.
题型:不详难度:来源:
若△ABC中,A、B位其中两个内角,若sin2A=sin2B,则三角形为______. |
答案
∵sin2A=sin2B,且A和B为三角形的两内角, ∴2A=2B或2A+2B=π, 解得:A=B或A+B=, 则三角形ABC为等腰三角形或直角三角形. 故答案为:等腰或直角三角形 |
举一反三
已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相离,则三条边长分别为|a|、|b|、|c|的三角形( )A.是钝角三角形 | B.是直角三角形 | C.是锐角三角形 | D.不存在 |
|
△ABC中,sin2A=sin2B+sin2C,则△ABC为( )A.直角三角形 | B.等腰直角三角形 | C.等边三角形 | D.等腰三角形 |
|
在△ABC中,若==,则△ABC的形状是( )A.等腰三角形 | B.等边三角形 | C.直角三角形 | D.等腰直角三角形 |
|
若已知tanα=(0<α<2π),那么角α所有可能的值是( ) |
最新试题
热门考点