已知函数f(x)=cos(2x-π3)+sin(2x-π6)+2cos2x(1)求f(x)的对称轴方程及单调递增区间;(2)当x∈[-π4,π3]时,求函数f(

已知函数f(x)=cos(2x-π3)+sin(2x-π6)+2cos2x(1)求f(x)的对称轴方程及单调递增区间;(2)当x∈[-π4,π3]时,求函数f(

题型:不详难度:来源:
已知函数f(x)=cos(2x-
π
3
)+sin(2x-
π
6
)+2cos2x

(1)求f(x)的对称轴方程及单调递增区间;
(2)当x∈[-
π
4
π
3
]时,求函数f(x)的值域.
答案
(1)∵f(x)=cos(2x-
π
3
)+sin(2x-
π
6
)+2cos2x
=cos2xcos
π
3
+sin2xsin
π
3
+sin2xcos
π
6
-cos2xsin
π
6
+cos2x+1
=sin2x+cos2x+1
=2sin(2x+
π
6
)+1,…4分
由2x+
π
6
=kπ+
π
2
(k∈Z)得:
x=
2
+
π
6
k∈Z…5分
由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z)得:
kπ-
π
3
≤x≤kπ+
π
6
(k∈Z)…6分
∴f(x)的对称轴方程x=
2
+
π
6
k∈Z,
单调递增区间为[kπ-
π
3
,kπ+
π
6
](k∈Z)…8分
(2)∵x∈[-
π
4
π
3
],
∴2x+
π
6
∈[-
π
3
6
],…9分
则2x+
π
6
=-
π
3
即x=-
π
4
时,f(x)min=1-


3
…10分
当2x+
π
6
=
π
2
即x=
π
6
时,f(x)max=3…11分,
故函数f(x)在x∈[-
π
4
π
3
]上的值域为:[1-


3
,3]…12分
举一反三
已知函数f(x)=
1
2
sin2x-


3
2
cos2x+1

(Ⅰ)求f(x)的最小正周期;
(II)若x∈[0,
π
2
]
,求f(x)的最大值及最小值.
题型:不详难度:| 查看答案
已知tanα、tanβ是方程x2+3


3
x+4=0
的两根,且α、β∈(-
π
2
π
2
)
,则tan(α+β)=______.
题型:不详难度:| 查看答案
设sin(
π
4
+θ)=
1
3
,则sin2θ=(  )
A.-
7
9
B.-
1
9
C.
1
9
D.
7
9
题型:辽宁难度:| 查看答案
已知:a=sin85°-


3
cos85°
,b=2(sin47°sin66°-sin24°sin43°),则a,b的大小关系为______.
题型:不详难度:| 查看答案
已知向量m=(sinA,  
1
2
)
n=(3,  sinA+


3
cosA)
共线,其中A是△ABC的内角.
(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.
题型:浙江模拟难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.