在数列{an}中,an+1=an+2,且a1=1,则a4等于( )A.8B.6C.9D.7
题型:不详难度:来源:
在数列{an}中,an+1=an+2,且a1=1,则a4等于( ) |
答案
因为an+1=an+2,所以an+1-an=2, 所以数列{an}是公差d=2的等差数列,首项a1=1, 所以a4=a1+3d=1+3×2=7, 故选D. |
举一反三
对于项数为m的数列{an}和{bn},记bk为a1,a2,…ak(k=1,2,…m)中的最小值.给出下列判断: ①若数列{bn}的前5项是5,5,3,3,1,则a4=3; ②若数列{bn}是递减数列,则数列{an}也一定是递减数列; ③数列{bn}可能是先减后增数列; ④若bk+am-k+1=C(k=1,2,…m),C为常数,则ai=bi(i=1,2,..m). 其中,正确判断的序号是( ) |
已知数列{an}的通项公式是an=,则2是该数列的第______项. |
有一数列{an},已知a1=-,从第2项起,每一项都等于1与它的前面一项的差的倒数,则a2001=______. |
在数列{}an中,如果存在常数T(T∈N*),使得an+T=an对于任意正整数n均成立,那么就称数列{an}为周期数列,其中T叫做数列{an]的周期.已知数列{bn}满足bn+2=|bn+1-bn|,若b1=1,b2=a,(a≤1,a≠0)当数列{bn}的周期为3时,则数列{bn}的前2010项的和S2010等于( ) |
最新试题
热门考点