已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*.(1)求满足an+1=|bn|的所有正整数n的集合;(2)若n≠16,求数列的最大值和最小值

已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*.(1)求满足an+1=|bn|的所有正整数n的集合;(2)若n≠16,求数列的最大值和最小值

题型:不详难度:来源:
已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*.
(1)求满足an+1=|bn|的所有正整数n的集合;
(2)若n≠16,求数列的最大值和最小值;
(3)记数列{anbn}的前n项和为Sn,求所有满足S2m=S2n(m<n)的有序整数对(m,n).
答案
(1){n|n≥15,n∈N*}(2)(n=18),最小值-2(n=17)(3)S16=S14,m=7,n=8
解析
(1)an+1=|bn|,n-15=|n-15|.
当n≥15时,an+1=|bn|恒成立;
当n<15时,n-15=-(n-15),n=15(舍去).
∴n的集合为{n|n≥15,n∈N*}.
(2).
(ⅰ)当n>16时,n取偶数时,
当n=18时,,无最小值;n取奇数时,=-1-
n=17时,=-2,无最大值.
(ⅱ)当n<16时,.
当n为偶数时,=-1-.
n=14时,=-=-
当n为奇数时,=1+
n=1时,=1-,n=15时,=0.
综上,最大值为(n=18),最小值-2(n=17).
(3)当n≤15时,bn=(-1)n-1(n-15),a2k-1b2k-1+a2kb2k=2(16-2k)≥0,
当n>15时,bn=(-1)n(n-15),a2k-1b2k-1+a2kb2k=2(2k-16)>0,其中a15b15+a16b16=0,
∴S16=S14,m=7,n=8.
举一反三
已知数列{an}中,a1=2,n∈N*,an>0,数列{an}的前n项和为Sn,且满足an+1.
(1)求{Sn}的通项公式;
(2)设{bk}是{Sn}中的按从小到大顺序组成的整数数列.
①求b3
②存在N(N∈N*),当n≤N时,使得在{Sn}中,数列{bk}有且只有20项,求N的范围.
题型:不详难度:| 查看答案
设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn,n∈N*,其中c为实数.
(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.
题型:不详难度:| 查看答案
正项数列{an}的前项和满足:-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an
(2)令bn,数列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<.
题型:不详难度:| 查看答案
已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和.若a1,a2,a5成等比数列,则S8=________.
题型:不详难度:| 查看答案
若等差数列的前6项和为23,前9项和为57,则数列的前n项和Sn=________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.