已知 是等差数列,是公比为的等比数列,,记为数列的前项和,(1)若是大于的正整数,求证:;(2)若是某一正整数,求证:是整数,且数列中每一项都是数列中的项;(3

已知 是等差数列,是公比为的等比数列,,记为数列的前项和,(1)若是大于的正整数,求证:;(2)若是某一正整数,求证:是整数,且数列中每一项都是数列中的项;(3

题型:不详难度:来源:
已知 是等差数列,是公比为的等比数列,,记为数列的前项和,
(1)若是大于的正整数,求证:
(2)若是某一正整数,求证:是整数,且数列中每一项都是数列中的项;
(3)是否存在这样的正数,使等比数列中有三项成等差数列?若存在,写出一个的值,并加以说明;若不存在,请说明理由;
答案
(1)
(2)存在使得中有三项成等差数列。
解析

试题分析:设的公差为,由,知
(1)因为,所以

所以
(2),由
所以解得,,但,所以,因为是正整数,所以是整数,即是整数,设数列中任意一项为
,设数列中的某一项=
现在只要证明存在正整数,使得,即在方程有正整数解即可,,所以
,若,则,那么,当时,因为,只要考虑的情况,因为,所以,因此是正整数,所以是正整数,因此数列中任意一项为
与数列的第项相等,从而结论成立。
(3)设数列中有三项成等差数列,则有
2,所以2,令,则,因为,所以,所以,即存在使得中有三项成等差数列。
点评:难题,等比数列、等差数列相关内容,已是高考必考内容,其难度飘忽不定,有时突出考查求和问题,如“分组求和法”、“裂项相消法”、“错位相减法”等,有时则突出涉及数列的证明题,如本题,突出考查学生的逻辑思维能力。本题解法中,注意通过构造“一般项”加以研究,带有普遍性。
举一反三
已知等差数列的前项和为,且
(1)求通项公式;
(2)求数列的前项和
题型:不详难度:| 查看答案
已知正项等差数列的前项和为,且满足
(Ⅰ)求数列的通项公式
(Ⅱ)若数列满足,求数列的前项和
题型:不详难度:| 查看答案
(本小题满分12分)设数列满足且对一切,有
(1)求数列的通项;
(2)设 ,求的取值范围.
题型:不详难度:| 查看答案
已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),
(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),
(2,4)…,则第57个数对是         
题型:不详难度:| 查看答案
(本小题满分13分)
在数列{an}中,a1=1,an=n2[1+++…+] (n≥2,n∈N)
(1)当n≥2时,求证:=
(2)求证:(1+)(1+)…(1+)<4
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.