在等差数列{an}中,a1=142,d=-2,从第一项起,每隔两项取出一项,构成新的数列{bn},则此数列的前n项和Sn取得最大值时n的值是(  ).A.23B

在等差数列{an}中,a1=142,d=-2,从第一项起,每隔两项取出一项,构成新的数列{bn},则此数列的前n项和Sn取得最大值时n的值是(  ).A.23B

题型:不详难度:来源:
在等差数列{an}中,a1=142,d=-2,从第一项起,每隔两项取出一项,构成新的数列{bn},则此数列的前n项和Sn取得最大值时n的值是(  ).
A.23B.24 C.25D.26

答案
B
解析
因为从第一项起,每隔两项取出一项,构成数列{bn},所以新数列的首项为b1a1=142,公差为d′=-2×3=-6,则bn=142+(n-1)(-6).令bn≥0,解得n≤24,因为n∈N*,所以数列{bn}的前24项都为正数项,从25项开始为负数项.因此新数列{bn}的前24项和取得最大值.故选B.
举一反三
已知首项为正数的等差数列{an}的前n项和为Sn,若a1 006a1 007是方程x2-2 012x-2 011=0的两根,则使Sn>0成立的正整数n的最大值是(  ).
A.1006B.1007C.2011 D.2012

题型:不详难度:| 查看答案
已知函数f(x)=cos x(x∈(0,2π))有两个不同的零点x1x2,方程f(x)=m有两个不同的实根x3x4.若把这四个数按从小到大排列构成等差数列,则实数m的值为(  ).
A.-B.C.D.-

题型:不详难度:| 查看答案
在正项数列{an}中,a1=2,an+1=2an+3×5n,则数列{an}的通项公式为________.
题型:不详难度:| 查看答案
Sn为数列{an}的前n项和,若 (n∈N*)是非零常数,则称该数列为“和等比数列”;若数列{cn}是首项为2,公差为d(d≠0)的等差数列,且数列{cn}是“和等比数列”,则d=________.
题型:不详难度:| 查看答案
正项数列{an}的前n项和Sn满足:-(n2n-1)Sn-(n2n)=0.
(1)求数列{an}的通项公式an
(2)令bn,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.