设数列{an}的前n项和Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{an}和{bn}的通项公式;(2)设cn=,求数

设数列{an}的前n项和Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{an}和{bn}的通项公式;(2)设cn=,求数

题型:不详难度:来源:
设数列{an}的前n项和Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=,求数列{cn}的前n项和Tn.
答案
(1)an= 4n-2,bn=2·n-1(2)Tn=-·4n
解析
(1)由于Sn=2n2,∴n=1时,a1=S1=2;
n≥2时,an=Sn-Sn-1­=2n2-2(n-1)2=4n-2,
当n=1时也适合.
∴an=4n-2,∴b1=a1=2,b2(6-2)=b1=2,
∴b2=,∴bn=2·n-1.
(2)cn==(2n-1)·4n-1
∴Tn=1+3·4+5·42+…+(2n-1)·4n-1
∴4Tn=4+3·42+…+(2n-3)·4n-1+(2n-1)·4n
∴-3Tn=1+2·4+2·42+…+2·4n-1-(2n-1)·4n
=1+2·-(2n-1)·4n=·4n-
∴Tn=-·4n.
举一反三
数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*).
(1)求数列{an}的通项an;
(2)求数列{nan}的前n项和Tn.
题型:不详难度:| 查看答案
已知f(x)=logax(a>0且a≠1),设f(a1),f(a2),…,f(an) (n∈N*)是首项为4,公差为2的等差数列.
(1)设a为常数,求证:{an}成等比数列;
(2)若bn=anf(an),{bn}的前n项和是Sn,当a=时,求Sn.
题型:不详难度:| 查看答案
假设某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,
(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,
1.086≈1.59)
题型:不详难度:| 查看答案
已知数列{an}、{bn}满足:a1=2,b1=1,
 (n≥2).
(1)令cn=an+bn,求数列{cn}的通项公式;
(2)求数列{an}的通项公式及前n项和公式Sn.
题型:不详难度:| 查看答案
已知函数f(x)=2x-2-x,数列{an}满足f(log2an)=-2n.
(1)求数列{an}的通项公式;
(2)求证:数列{an}是递减数列.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.