(Ⅰ)因为数列{an}满足[2+(-1)n+1]an+[2+(-1)n]an+1=1+(-1)n•3n,(*),且a1=2, 所以将n=1代入(*)式,得3a1+a2=-2,故a2=-8 将n=2代入(*)式,得a2+3a3=7,故a3=5 (Ⅱ)证明:在(*)式中,用2n代换n,得[2+(-1)2n+1]a2n+[2+(-1)2n]a2n+1=1+(-1)2n•6n, 即a2n+3a2n+1=1+6n ①, 再在(*)式中,用2n-1代换n,得[2+(-1)2n]a2n-1+[2+(-1)2n-1]a2n=1+(-1)2n-1•(6n-3), 即3a2n-1+a2n=4-6n②, ①-②,得3(a2n+1-a2n-1)=12n-3,即bn=4n-1 ∴bn+1-bn=4, ∴{bn}是等差数列; (Ⅲ)因为a1=2,由(Ⅱ)知,a2k-1=a1+(a3-a1)+…+(a2k-1-a2k-3)=(k-1)(2k-1)+2 ③, 将③代入②,得3(k-1)(2k-1)+6+a2k=4-6k,即a2k=-6k2+3k-5 所以c2k-1=a2k-1+(2k-1)2=-4k2-5k+,c2k=a2k+(2k)2=-4k2+3k-5, 则c2k-1+c2k=-2k-, 所以S2k=(c1+c2)+(c3+c4)+…+(c2k-1+c2k)=-k2-k 所以S2k-1=S2k-c2k=(-k2-k)-(-4k2+3k-5)=3k2-+5 故Sn=. |