已知数列{an}是首项为a1=4,公比q≠1的等比数列,且4a1,a5,-2a3成等差数列,求公比q的值.

已知数列{an}是首项为a1=4,公比q≠1的等比数列,且4a1,a5,-2a3成等差数列,求公比q的值.

题型:不详难度:来源:
已知数列{an}是首项为a1=4,公比q≠1的等比数列,且4a1,a5,-2a3成等差数列,求公比q的值.
答案
∵4a1,a5,-2a3成等差数列,
∴2a5=4a1+(-2a3
∵a1=4,公比为q
∴8q4=16-8q2
∴(q2-1)(q2+2)=0,解得q2=1
又∵q≠1
∴q=-1
举一反三
已知实数q≠0,数列{an}的前n项和Sn,a1≠0,对于任意正整数m,n且m>n,Sn-Sm=qmSn-m恒成立.
(1)证明数列{an}是等比数列;
(2)若正整数i,j,k成公差为3的等差数列,Si,Sj,Sk按一定顺序排列成等差数列,求q的值.
题型:不详难度:| 查看答案
已知{an}为等差数列,若a3+a4+a8=9,则S9=(  )
A.24B.27C.15D.54
题型:滨州一模难度:| 查看答案
在二项式(


x
+
1
2
4x

)n
的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,则有理项都不相邻的概率为(  )
A.
1
6
B.
1
4
C.
1
3
D.
5
12
题型:郑州二模难度:| 查看答案
已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,数列{bn}的前n项和为Sn,Tn=S2n-Sn
(1)求证:数列{
1
bn
}
为等差数列,并求通项bn
(2)求证:Tn+1>Tn
(3)求证:当n≥2时,S2n
7n+11
12
题型:南通模拟难度:| 查看答案
已知首项不为零的数列{an}的前n项和为Sn,若对任意的r,t∈N*,都有
Sr
St
=( 
r
t
 )2

(Ⅰ)判断数列{an}是否为等差数列,并证明你的结论;
(Ⅱ)若数列{bn}的第n项bn是数列{an}的第bn-1项(n≥2,n∈N*),且a1=1,b1=3,求数列{bn}的前n项和Tn
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.