(I)∵数列{an}的前n项和Sn=2n2+2n, ∴a1=S1=2+2=4, an=Sn-Sn-1=(2n2+2n)-[2(n-1)2+2(n-1)]=4n, 当n=1时,4n=4=a1, ∴an=4n. ∵数列{bn}的前n项和Tn=2-bn, ∴当n=1时,T1=b1=2-b1,解得b1=1. 当n>1时,Tn=2-bn,Tn-1=2-bn-1, ∴Tn-Tn-1=bn=bn-1-bn,∴2bn=bn-1, ∴=, ∴数列{bn}是以首项为1,公比为的等比数列, ∴bn=()n-1,n∈N*. (II)∵cn==n•()n-1, ∴数列{cn}的前n和: Rn=c1+c2+c3+…+cn =1•()0+2×()1+3×()2+…+(n-1)•()n-2+n•()n-1,① ∴Rn =1•()1+2×()2+3×()3+…+(n-1)•()n-1+n•()n,② ①-②,得Rn=1++()2+()3+…+()n-1-n•()n Rn=-n•()n =2-()n+1-n•()n, ∴Rn=4-2(n+2)()n<4; ( III)∵cn=an+(-1)nlog2bn =4n+(-1)nlog2()n-1 =4n+(-1)n(1-n), ∴数列{cn}的前2n和 R2n=[4×1+(-1)1(1-1)]+[4×2+(-1)2(1-2)]+[4×3+(-1)3(1-3)]+…+[4×2n+(-1)2n(1-2n)] =4(1+2+3+…+2n)+[0-1+2-3+…+(2n-2)-(2n-1)] =4×-n =8n2+3n. ∴R2n=8n2+3n. |