已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)设cn=anbn4,求证数列

已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)设cn=anbn4,求证数列

题型:不详难度:来源:
已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设cn=
anbn
4
,求证数列{cn}的前n和Rn<4;
(III)设cn=an+(-1)nlog2bn,求数列{cn}的前2n和R2n
答案
(I)∵数列{an}的前n项和Sn=2n2+2n,
∴a1=S1=2+2=4,
an=Sn-Sn-1=(2n2+2n)-[2(n-1)2+2(n-1)]=4n,
当n=1时,4n=4=a1
∴an=4n.
∵数列{bn}的前n项和Tn=2-bn
∴当n=1时,T1=b1=2-b1,解得b1=1.
当n>1时,Tn=2-bn,Tn-1=2-bn-1
∴Tn-Tn-1=bn=bn-1-bn,∴2bn=bn-1
bn
bn-1
=
1
2

∴数列{bn}是以首项为1,公比为
1
2
的等比数列,
bn=(
1
2
)n-1
,n∈N*
(II)∵cn=
anbn
4
=n•(
1
2
)
n-1

∴数列{cn}的前n和:
Rn=c1+c2+c3+…+cn
=1•(
1
2
0+2×(
1
2
1+3×(
1
2
2+…+(n-1)•(
1
2
n-2+n•(
1
2
n-1,①
1
2
Rn =1•(
1
2
1+2×(
1
2
2+3×(
1
2
3+…+(n-1)•(
1
2
n-1+n•(
1
2
n,②
①-②,得
1
2
R
n
=1+
1
2
+(
1
2
2+(
1
2
3+…+(
1
2
n-1-n•(
1
2
n
1
2
R
n
=
1×[1-(
1
2
)
n
]
1-
1
2
-n•(
1
2
n
=2-(
1
2
)
n+1
-n•(
1
2
n
Rn=4-2(n+2)(
1
2
)n<4

( III)∵cn=an+(-1)nlog2bn
=4n+(-1)nlog2(
1
2
)
n-1

=4n+(-1)n(1-n),
∴数列{cn}的前2n和
R2n=[4×1+(-1)1(1-1)]+[4×2+(-1)2(1-2)]+[4×3+(-1)3(1-3)]+…+[4×2n+(-1)2n(1-2n)]
=4(1+2+3+…+2n)+[0-1+2-3+…+(2n-2)-(2n-1)]
=4×
2n(1+2n)
2
-n
=8n2+3n.
∴R2n=8n2+3n.
举一反三
已知数列{an}中,a1=2,对于任意的p,q∈N*,有ap+q=ap+aq
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:an=
b1
2+1
-
b2
22+1
+
b3
23+1
-
b4
24+1
+…+(-1)n-1
bn
2n+1
(n∈N*)
求数列{bn}的通项公式;
(3)设Cn=3n+λbn(n∈N*),是否存在实数λ,当n∈N*时,Cn+1>Cn恒成立,若存在,求实数λ的取值范围,若不存在,请说明理由.
题型:不详难度:| 查看答案
若正项数列{an} 满足
a2n+1
=
a2n
+2
,且a25=7,则a1=(  )
A.
1
2
B.1C.


2
D.2
题型:不详难度:| 查看答案
已知数列{an}前 n项和为Sn,且Sn=n2
(1)求{an}的通项公式    
(2)设 bn=
1
anan+1
,求数列{bn}的前 n项 和Tn
题型:不详难度:| 查看答案
已知递增的等差数列{an}满足a1=1,a3=a22-4,则an=______,Sn=______.
题型:不详难度:| 查看答案
已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(I)求数列{an}的通项公式;
(II)设Tn为数列{
1
anan+1
}的前n项和,若Tn≤λan+1对∀n∈N*恒成立,求实数λ的最小值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.