解:(1)由题意得(a1+d)(a1+13d)=(a1+4d)2(d>0) ∵a1=1,∴d=2, ∴an=2n﹣1, ∵b2=a2=1+2=3,b3=a5=1+8=9, ∴, ∴b1=1,q=3, ∴bn=3 n﹣1 (2)当n=1时,c1=2a2×b1=18; 当n≥2时,=4n+1, ∴cn=(4n+1)3 n﹣1, 故, ∴Sn=c1+c2+…+cn=18+9×3+13×32+17×33+…+(4n﹣3)×3 n﹣2+(4n+1)×3 n﹣1,① 3Sn=54+9×32+13×33+17×34+…+(4n﹣3)×3 n﹣1+(4n+1)×3n,② ①﹣②,得 ﹣2Sn=﹣9+4(32+33+34+…+3 n﹣1)﹣(4n+1)×3n =﹣(4n+1)×3n =﹣9+2×3n﹣18﹣(4n+1)×3n =﹣27+(1﹣4n)×3n, ∴. |