等差数列{an}的前n项和Sn满足S20=S40,下列结论中一定正确的是(  )A.S30是Sn中的最大值B.S30是Sn中的最小值C.S30=0D.S60=0

等差数列{an}的前n项和Sn满足S20=S40,下列结论中一定正确的是(  )A.S30是Sn中的最大值B.S30是Sn中的最小值C.S30=0D.S60=0

题型:不详难度:来源:
等差数列{an}的前n项和Sn满足S20=S40,下列结论中一定正确的是(  )
A.S30是Sn中的最大值B.S30是Sn中的最小值
C.S30=0D.S60=0
答案
设等差数列{an}的公差为d,①若d=0,可排除A,B;②d≠0,可设Sn=pn2+qn(p≠0),
∵S20=S40,∴400p+20q=1600p+40q,q=-60p,
∴S60=3600p-3600p=0;
故选D.
举一反三
已知各项均为正数的等差数列{an}的前119项和为1190,那么a2•a118的最大值是(  )
A.2


20
B.100C.25D.50
题型:不详难度:| 查看答案
设正项数列{an}的前n项和为Sn,对于任意的n∈N*,点(an,Sn)都在函数f(x)=
1
4
x2+
1
2
x
的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
anan+1
,记数列{bn}的前n项和为Tn,求Tn的最值.
题型:不详难度:| 查看答案
等差数列{an}的公差为1,且a1+a2+a3+…+a98+a99=99,那么a3+a6+…+a96+a99等于(  )
A.16B.33C.48D.66
题型:不详难度:| 查看答案
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足
b1
a1
+
b2
a2
+…+
bn
an
=
2n-1
2n
,n∈N*
,求{bn}的通项公式;
(3)求数列{bn}前n项和Tn
题型:不详难度:| 查看答案
(1)已知等差数列{an}的公差d>0,且a1,a2是方程x2-14x+45=0的两根,求数列{an}通项公式
(2)设bn=
2
anan+1
,数列{bn}的前n项和为Sn,证明Sn<1.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.