(本小题满分13分)(Ⅰ)已知数列的前项和,求通项公式;(Ⅱ)已知等比数列中,,,求通项公式

(本小题满分13分)(Ⅰ)已知数列的前项和,求通项公式;(Ⅱ)已知等比数列中,,,求通项公式

题型:不详难度:来源:
(本小题满分13分)(Ⅰ)已知数列的前项和,求通项公式
(Ⅱ)已知等比数列中,,求通项公式
答案
(Ⅰ)(Ⅱ)
解析

试题分析:(Ⅰ)当时,,                                          ……2分
时,,                                           ……5分
显然,不适合上式,所以有                                  ……6分
(Ⅱ)因为是等比数列,所以,所以由条件知:
,                                                    ……8分
两式相除化简得,                                              ……10分
解得,或,                                                      ……12分
所以 .                                              ……13分的关系求通项和等比数列中的基本量的运算,考查学生的运算求解能力.
点评:(1)由的关系求通项时一定要分两种情况,然后检验能否合二为一,如果不能,则以分段形式给出.(2)求解等比数列的基本量时,不要忽略时的情况.
举一反三
等比数列中,=4,函数,则(  )
A.B.C.D.

题型:不详难度:| 查看答案
(本小题共13分)已知数列中,是数列的前项和,且.
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)若 是数列的前项和,求.
题型:不详难度:| 查看答案
在等比数列中,),,则=(   )
A.B.C.D.

题型:不详难度:| 查看答案
在数列中,如果存在常数,使得对于任意正整数均成立,那么就称数列为周期数列,其中叫做数列的周期. 已知数列满足,若,当数列的周期为时,则数列的前2012项的和为 (    )
A.1339 +aB.1341+aC.671 +aD.672+a

题型:不详难度:| 查看答案
在等比数列中,已知,则该数列的前12项的和为        .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.