设数列{an}满足a1+3a2+32a3+…+3n-1an=,n∈N*。(1)求数列{an}的通项;(2)设bn=,求数列{bn}的前n项和Sn。

设数列{an}满足a1+3a2+32a3+…+3n-1an=,n∈N*。(1)求数列{an}的通项;(2)设bn=,求数列{bn}的前n项和Sn。

题型:山东省高考真题难度:来源:
设数列{an}满足a1+3a2+32a3+…+3n-1an=,n∈N*。
(1)求数列{an}的通项;
(2)设bn=,求数列{bn}的前n项和Sn
答案
解:(1)∵  ①
∴当n≥2时
  ②
①-②得

在①中,令n=1,得


(2)∵

  ③
  ④
④-③得


举一反三
已知等比数列{an}中,a2,a3,a4分别是某等差数列的第5项、第3项、第2项,且a1=1,公比q≠1,则an等于 [     ]
A.21-n
B.22-n
C.2n-1
D.2n-2
题型:0107 模拟题难度:| 查看答案
已知数列{an}的前n项和Sn,对一切正整数n,点(n,Sn)都在函数f(x)=2x+2-4的图象上。
(1)求数列{an}的通项公式;
(2)设bn=an·log2an,求数列{bn}的前n项和Tn
题型:同步题难度:| 查看答案
已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,且a≠0,a≠1),
(1)求{an}的通项公式;
(2)设bn=an2+Sn·an,若数列{bn}为等比数列,求a的值;
(3)在满足条件(2)的情形下,设,数列{cn}的前n项和为Tn,求证:Tn>2n-
题型:模拟题难度:| 查看答案
设Sn是数列{an}的前n项和,点P(an,Sn)在直线y=2x-2上(n∈N+)。
(1)求数列{an}的通项公式;
(2)记,数列{bn}的前n项和为Tn,求使Tn>2011的n的最小值;
(3)设正数数列{cn}满足log2an+1=(cnn+1,求数列{cn}中的最大项。
题型:湖北省模拟题难度:| 查看答案
已知数列{an}满足an+1-2an=0,且a3+2是a2,a4的等差中项。
(1)求数列{an}的通项公式an
(2)若bn=13+2,Sn=b1+b2+…+bn,求Sn的最大值。
题型:同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.