已知数列{an}满足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1)(Ⅰ)求证数列{1an}是等差数列并求{an}的通项公式;(Ⅱ)设bn=

已知数列{an}满足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1)(Ⅰ)求证数列{1an}是等差数列并求{an}的通项公式;(Ⅱ)设bn=

题型:不详难度:来源:
已知数列{an}满足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1)
(Ⅰ)求证数列{
1
an
}
是等差数列并求{an}的通项公式;
(Ⅱ)设bn=anan+1,求证:b1+b2+…+bn
1
2
答案
证明:(Ⅰ)an-an-1+2anan-1=0两边同除以anan-1得:
1
an
-
1
an-1
=2

所以数列{
1
an
}
是以1为首项,2为公差的等差数列…(3分)
于是
1
an
=2n-1
an=
1
2n-1
,(n∈N*)
…(6分)
(Ⅱ)由(Ⅰ),bn=
1
(2n-1)(2n+1)

b1+b2+…+bn=
1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)

=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)<
1
2
…(12分)
举一反三
已知等差数列{an}前三项的和为-3,前三项的积为8.
(1)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.
(2)若a2,a3,a1不成等比数列,求数列{
1
anan+1
}的前n项和.
题型:不详难度:| 查看答案
已知无穷数列{an}的前n项和为Sn,且满足Sn=A
a2n
+Ban+C
,其中A、B、C是常数.
(1)若A=0,B=3,C=-2,求数列{an}的通项公式;
(2)若A=1,B=
1
2
C=
1
16
,且an>0,求数列{an}的前n项和Sn
(3)试探究A、B、C满足什么条件时,数列{an}是公比不为-1的等比数列.
题型:不详难度:| 查看答案
已知数列{an}的前n项和Sn=
n+n2
2k-1
(n∈N*,k是与n无关的正整数).
(1)求数列{an}的通项公式,并证明数列{an}是等差数列;
(2)设数列{an}满足不等式:|a1-1|+|a2-1|+…|a2k-1-1|+|a2k-1|≤6,求所有这样的k的值.
题型:不详难度:| 查看答案
已知{an}是首项为1的等差数列,Sn是{an}的前n项和,且S5=a13,则数列{
1
anan+1
}
的前5项和为(  )
A.
10
11
B.
5
11
C.
4
5
D.
2
5
题型:不详难度:| 查看答案
已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2013项之和S2013等于(  )
A.2008B.2010C.4018D.1
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.