(1)n=1时,a1=1-a1,a1=, ∵Sn=1-an(n∈N*)①,∴Sn+1=1-an+1②, ②-①得an+1=-an+1+a n,∴an+1=a n, ∴数列{an}是首项为a1=,公比q=的等比数列, ∴an=•()n-1=()n (2)bn==n•2n(n∈N*) ∴Tn=1×2+2×22+3×23+…+n×2n,③ 2Tn=1×22+2×23+3+3×23+…+n×2n+1,④ ③-④得,-Tn=2+22+23+…+2n-n×2 n+1③, =-n×2 n+1③, 整理得Tn=(n-1)2 n+1+2 |