数列{an},前n项和Sn,满足a1=12,Sn+2an+1=1(n∈N*)(1)求数列{an}的通项公式;(2)求数列{nSn}前n项和Tn.

数列{an},前n项和Sn,满足a1=12,Sn+2an+1=1(n∈N*)(1)求数列{an}的通项公式;(2)求数列{nSn}前n项和Tn.

题型:不详难度:来源:
数列{an},前n项和Sn,满足a1=
1
2
Sn+2an+1=1(n∈N*)
(1)求数列{an}的通项公式;
(2)求数列{nSn}前n项和Tn
答案
(1)∵Sn+2an+1=1(n∈N*)
∴Sn-1+2an=1(n≥2)
两式相减可得,Sn-Sn-1+2an+1-2an=0
即2an+1=an
an+1
an
=
1
2

a1=
1
2

∴数列{an}是以
1
2
为首项以
1
2
为公比的等比数列
an=
1
2
•(
1
2
)n-1
=(
1
2
)n

(2):∵Sn+2an+1=1(n∈N*)
Sn+2•(
1
2
)n+1=1

Sn=1-(
1
2
)n

∴nSn=n-n•(
1
2
)n

Sn=1•
1
2
+2•(
1
2
)2+…+n•(
1
2
)n

1
2
Sn
=(
1
2
)2+2•(
1
2
)3+…+(n-1)•(
1
2
)n+n•(
1
2
)n+1

两式相减可得,
1
2
Sn
=
1
2
+(
1
2
)2+…+(
1
2
)n-n•(
1
2
)n+1

=
1
2
(1-
1
2n
)
1-
1
2
-n•(
1
2
)n+1

∴Sn=2-
1
2n-1
-
n
2n
=2-
2+n
2n

Tn=1-1•
1
2
+2-2•(
1
2
)2+…+n-n•(
1
2
)n

=(1+2+3+…+n)-[1•
1
2
+2•(
1
2
)2+…+n•(
1
2
)n]

=
n(n+1)
2
-2+
2+n
2n
举一反三
在数列{an}中,a1=-60,an+1=an+3,则|a1|+|a2|+…+|a30|=(  )
A.-445B.765C.1080D.3105
题型:不详难度:| 查看答案
设{an}是公差不为零的等差数列,Sn为其前n项和,满足S4=8且a1、a2、a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足:bn-an=2n+1,n∈N*,Tn为数列{bn}的前n项和,问是否存在正整数n,使得Tn=2012成立?若存在,求出n;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知数列{an}通项为an=ncos(
2
+
π
3
)
,Sn为其前n项的和,则S2012=______.
题型:不详难度:| 查看答案
设曲线y=xn(n∈N*)与x轴及直线x=1围成的封闭图形的面积为an,设bn=anan+1,则b1+b2+…+b2012=(  )
A.
503
1007
B.
2011
2012
C.
2012
2013
D.
2013
2014
题型:不详难度:| 查看答案
若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=(  )
A.15B.12C.-12D.-15
题型:安徽难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.