已知对任意正整数n都有a1+a2+…+an=n3,则1a2-1+1a3-1+…+1a100-1=______.

已知对任意正整数n都有a1+a2+…+an=n3,则1a2-1+1a3-1+…+1a100-1=______.

题型:不详难度:来源:
已知对任意正整数n都有a1+a2+…+an=n3,则
1
a2-1
+
1
a3-1
+…+
1
a100-1
=______.
答案
∵a1+a2+a3+…+an=n3
∴a1=1,a1+a2=8,a1+a2+a3=27,a1+a2+a3+a4=64,a1+a2+a3+a4+a5=125,
∴a2=7,a3=19,a4=37,a5=61,an=3n(n-1)+1,
∴a100=3×100×99+1,
1
a2-1
+
1
a3-1
+…+
1
a100-1
=
1
6
+
1
18
+
1
36
+
1
60
+…+
1
3×100×99

=
1
3
1
2
+
1
6
+
1
12
+
1
20
+…+
1
100×99
),
=
1
3
(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+…+
1
99
-
1
100
),
=
1
3
(1-
1
100
),
=
33
100

故答案为:
33
100
举一反三
设数列{an}(n∈N*)的前n项的和为Sn,满足a1=1,
Sn+1
an+1
-
Sn
an
=
1
2n
(n∈N*).
(1)求证:Sn=(2-
1
2n-1
)an
(2)求数列{an}的通项公式.
题型:不详难度:| 查看答案
数列{an}满足an=





n,   n=2k-1
ak, n=2k
,其中k∈N*,设f(n)=a1+a2+…+a2n-1+a2n,则f(2013)-f(2012)等于______.
题型:不详难度:| 查看答案
设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是______(用a1和q表示)
题型:不详难度:| 查看答案
将数列{an}中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如下数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
a1   a2   a3
a4   a5   a6   a7
a8   a9   a10  a11  a12

a66=
2
5
.请解答以下问题:
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求上表中第k(k∈N*)行所有项的和S(k);
(Ⅲ)若关于x的不等式S(k)+
1
k
1-x2
x
x∈[
1
200
 , 
1
20
]
上有解,求正整数k的取值范围.
题型:不详难度:| 查看答案
求数列1,3
1
2
,5
1
4
,…(2n-1)+
1
2n-1
…的前n项和.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.