数列112+2,122+4,132+6,142+8,…前n项的和等于______.

数列112+2,122+4,132+6,142+8,…前n项的和等于______.

题型:不详难度:来源:
数列
1
12+2
1
22+4
1
32+6
1
42+8
,…
前n项的和等于______.
答案
an=
1
n2+2n
=
1
n(n+2)
 =
1
2
(
1
n
-
1
n+2
 )

∴Sn=a1+a2+a3+…+an
=
1
2
(1-
1
3
) +
1
2
(
1
2
-
1
4
)+
1
2
1
3
-
1
5
)+…+
1
2
(
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
2n+3
2(n+1)(n+2)

故答案为:
3
4
-
2n+3
2(n+1)(n+2)
举一反三
已知正项数列{ an }满足Sn+Sn-1=
2
ta
n
+2 (n≥2,t>0),a1=1,其中Sn是数列{ an }的前n项和.
(Ⅰ)求通项an
(Ⅱ)记数列{
1
anan+1
}的前n项和为Tn,若Tn<2对所有的n∈N*都成立.求证:0<t≤1.
题型:不详难度:| 查看答案
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.
(1)求数列{an}的通项公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
题型:咸阳三模难度:| 查看答案
已知函数f(n)=





-n2,n=2k(k∈z)
n2,n=2k-1(k∈z)
,an=f(n)+f(n+1),则a1+a2+…+a100=(  )
A.0B.-100C.100D.10200
题型:不详难度:| 查看答案
已知数列{2n-1•an}的前n项和Sn=9-6n
(1)求数列{an}的通项公式.
(2)设bn=n(3-log2
|an|
3
)
,求数列{
1
bn
}
的前n项和.
题型:不详难度:| 查看答案
数列{an}满足a1=a,a2=-a(a>0),且{an}从第二项起是公差为6的等差数列,Sn是{an}的前n项和.
(1)当n≥2时,用a与n表示an与Sn
(2)若在S6与S7两项中至少有一项是Sn的最小值,试求a的取值范围;
(3)若a为正整数,在(2)的条件下,设Sn取S6为最小值的概率是p1,Sn取S7为最小值的概率是p2,比较p1与p2的大小.
题型:嘉定区一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.