(Ⅰ)由题意Sn=2n,Sn-1=2n-1(n≥2), 两式相减得an=2n-2n-1=2n-1(n≥2). 当n=1时,a1=S1=2, ∴an=. (Ⅱ)∵bn+1=bn+(2n-1), ∴bn-bn-1=2n-3 bn-1-bn-2=2n-5 … b4-b3=5 b3-b2=3 b2-b1=1, 以上各式相加得bn-b1=1+3+5+…+(2n-3) ==(n-1)2 ∵b1=-1,∴bn=n2-2n. ∴cn=. ∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1, ∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n. ∴-Tn=2+22+23+…+2n-1-(n-2)×2n =-(n-2)×2n =2n-2-(n-2)×2n=-2-(n-3)×2n. ∴Tn=2+(n-3)×2n. |