(1)∵数列{}为等差数列 设bn=,b1==2bn+1-bn=- =[(an+1-2an)+1]=[(2n+1-1)+1]=1,(6分) 可知,数列{}为首项是2、公差是1的等差数列.(7分) (2)由(1)知,=+(n-1)×1, ∴an=(n+1)•2n+1.(8分) ∴Sn=(2•21+1)+(3•22+1)+…+(n•2n-1+1)+[(n+1)•2n+1]. 即Sn=2•21+3•22+…+n•2n-1+(n+1)•2n+n. 令Tn=2•21+3•22+…+n•2n-1+(n+1)•2n,① 则2Tn=2•22+3•23+…+n•2n+(n+1)•2n+1.②(12分) ②-①,得Tn=-2•21-(22+23++2n)+(n+1)•2n+1=n•2n+1. ∴Sn=n•2n+1+n=n•(2n+1+1).(15分) |