解:(Ⅰ)设等差数列的公差为d, 由 =4得 =4, 所以a2=3a1=3且d=a2﹣a1=2, 所以an=a1+(n﹣1)d=2n﹣1, = (Ⅱ)由bn=an2n﹣1,得bn=(2n﹣1)2n﹣1. 所以Tn=1+321+522+…+(2n﹣1)2n﹣1 ① 2Tn=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n ② ①﹣②得:﹣Tn=1+22+222+…+22n﹣1﹣(2n﹣1)2n =2(1+2+22+…+2n﹣1)﹣(2n﹣1)2 n﹣1 =2× ﹣(2n﹣1)2n﹣1 =2n(3﹣2n)﹣3. ∴Tn=(2n﹣3)2n+3. |