已知f(x)=,n∈N*,试比较f()与的大小,并且说明理由.

已知f(x)=,n∈N*,试比较f()与的大小,并且说明理由.

题型:不详难度:来源:
已知f(x)=,n∈N*,试比较f()与的大小,并且说明理由.
答案
见解析
解析
f()==
=1-,
=1-,
∴f()与的大小等价于2n与n2的大小.
当n=1时,21>12;当n=2时,22=22;
当n=3时,23<32;当n=4时,24=42;
当n=5时,25>52.猜想当n≥5时,2n>n2.
以下用数学归纳法证明:
①当n=5时,由上可知不等式成立;
②假设n=k(k≥5,k∈N*)时,
不等式成立,即2k>k2,
则当n=k+1时,2k+1=2·2k>2k2,
又∵2k2-(k+1)2=(k-1)2-2>0(∵k≥5),即2k+1>(k+1)2,
∴n=k+1时,不等式成立.
综合①②对n≥5,n∈N*不等式2n>n2成立.
∴当n=1或n≥5时,f()>;
当n=3时,f()<;
当n=2或4时,f()=.
举一反三
已知a1=1,a2=4,an+2=4an+1+an,bn=,n∈N+.
(1)求b1,b2,b3的值.
(2)设cn=bnbn+1,Sn为数列{cn}的前n项和,求证: Sn≥17n.
(3)求证:|b2n-bn|<·.
题型:不详难度:| 查看答案
已知实数a,b,c满足a+b+c=2,求a2+2b2+c2的最小值.
题型:不详难度:| 查看答案
已知a2+2b2+3c2=6,若存在实数a,b,c,使得不等式a+2b+3c>|x+1|成立,求实数x的取值范围.
题型:不详难度:| 查看答案
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,试求a的最值.
题型:不详难度:| 查看答案
设a,b,c均为正数,证明:++≥a+b+c.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.