已知函数.(1)求在区间上的最大值;(2)若过点存在3条直线与曲线相切,求t的取值范围;(3)问过点分别存在几条直线与曲线相切?(只需写出结论)

已知函数.(1)求在区间上的最大值;(2)若过点存在3条直线与曲线相切,求t的取值范围;(3)问过点分别存在几条直线与曲线相切?(只需写出结论)

题型:不详难度:来源:
已知函数.
(1)求在区间上的最大值;
(2)若过点存在3条直线与曲线相切,求t的取值范围;
(3)问过点分别存在几条直线与曲线相切?(只需写出结论)
答案

解析
试题分析:(1)求导数,导数等于0求出,再代入原函数解析式,最后比较大小,即可;(2)设切点,由相切得出切线方程,然后列表并讨论求出结果;(3)由(2)容易得出结果.
(1)由,令,得
因为
所以在区间上的最大值为.
(2)设过点P(1,t)的直线与曲线相切于点,则
,且切线斜率为,所以切线方程为
因此,整理得:
,则“过点存在3条直线与曲线相切”等价于“有3个不同零点”, =
的情况如下:


0

1


+
0

0
+


t+3



 
所以,的极大值,的极小值,
,即时,此时在区间上分别至多有1个零点,所以
至多有2个零点,
时,此时在区间上分别至多有1个零点,所以
至多有2个零点.
,即时,因为
所以分别为区间上恰有1个零点,由于在区间上单调,所以分别在区间上恰有1个零点.
综上可知,当过点存在3条直线与曲线相切时,t的取值范围是.
(3)过点A(-1,2)存在3条直线与曲线相切;
过点B(2,10)存在2条直线与曲线相切;
过点C(0,2)存在1条直线与曲线相切.
举一反三
已知函数,其中,且曲线在点处的切线垂直于.
(1)求的值;
(2)求函数的单调区间与极值.
题型:不详难度:| 查看答案
(12分)设函数,曲线在点处的切线方程为
(I)求
(II)证明:
题型:不详难度:| 查看答案
在同意直角坐标系中,函数的图像不可能的是(  )

题型:不详难度:| 查看答案
已知函数上为增函数,
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.
题型:不详难度:| 查看答案
已知函数.
(1)若函数的图象在点处的切线的倾斜角为,求上的最小值;
(2)若存在,使,求a的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.