试题分析:(1)首先求函数的定义域,的导数:,再分,,三种情况,讨论函数的单调性;(2)先在(1)的基础上,当时,由的单调性得.同理当时,由的单调性得.下面再用数学归纳法证明. (1)的定义域为. (1)当时,若,则在上是增函数;若则在上是减函数;若则在上是增函数. (2)当时,成立当且仅当在上是增函数. (iii)当时,若,则在是上是增函数;若,则在上是减函数;若,则在上是增函数. (2)由(1)知,当时,在是增函数.当时,,即.又由(1)知,当时,在上是减函数;当时,,即.下面用数学归纳法证明. (1)当时,由已知,故结论成立; (2)假设当时结论成立,即.当时,,即当时有,结论成立.根据(1)、(2)知对任何结论都成立. |