(本题满分5分)已知函数的图象过点(—1,—6),且函数 的图象关于y轴对称。  (1)求m、n的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(

(本题满分5分)已知函数的图象过点(—1,—6),且函数 的图象关于y轴对称。  (1)求m、n的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(

题型:不详难度:来源:
(本题满分5分)已知函数的图象过点(—1,—6),且函数 的图象关于y轴对称。  (1)求m、n的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.    
答案
(Ⅰ)m=-3, n=0单调递减区间是(0,2) (Ⅱ) :当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,极大值;当a=1或a≥3时,f(x)无极值   
解析
(I)由函数f(x)图象过点(-1,-6),得m-n="-3," …………①…………1分
f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,
g(x)=f′(x)+6x=3x2+(2m+6)x+n;
g(x)图象关于y轴对称,所以-=0,所以m=-3,………………3分
代入①得n=0……………………5分
于是f(x)=3x2-6x=3x(x-2).
f(x)>得x>2或x<0,
f(x)的单调递增区间是(-∞,0),(2,+∞);……………………6分
f(x)<0得0<x<2,
f(x)的单调递减区间是(0,2)……………………6分
(II)由(Ⅰ)得f(x)=3x(x-2),  令f(x)=0得x=0或x=2.
x变化时,f(x)、f(x)的变化情况如下表:
X
(-∞.0)
0
(0,2)
2
(2,+ ∞)
f(x)
+
0

0

f(x)

极大值

极小值

由此可得:
当0<a<1时,f(x)在(a-1,a+1)内有极大值f(O)=-2,无极小值;…………9分
a=1时,f(x)在(a-1,a+1)内无极值;………………11分
当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值;…………13分
a≥3时,f(x)在(a-1,a+1)内无极值………………15分
综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,
无极大值;当a=1或a≥3时,f(x)无极值      
举一反三
设函数,它们的图象在轴上的公共点处有公切线,则当时,的大小关系是                                              (  )
A.B.C.D.的大小不确定

题型:不详难度:| 查看答案
关于的三次函数的两个极值点为P、Q,其中P为原点,Q在曲线上,则曲线的切线斜率的最大值的最小值为_______________.
题型:不详难度:| 查看答案
设函数
(Ⅰ)若,           
( i )求的值;
( ii)在
(Ⅱ)当上是单调函数,求的取值范围。
(参考数据
题型:不详难度:| 查看答案
已知函数
(1)在区间是增函数还是减函数?并证明你的结论;
(2)若当时,恒成立,求整数的最小值。
题型:不详难度:| 查看答案
(本小题14分)已知函数为常数),若直线的图象都相切,且的图象相切于定点.     (1)求直线的方程及的值;(2)当时,讨论关于的方程的实数解的个数.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.