若函数f(x)=ax3+x,(1)求实数a的取值范围,使f(x)在R上是增函数.(2)求实数a的取值范围,使f(x)恰好有三个单调区间.

若函数f(x)=ax3+x,(1)求实数a的取值范围,使f(x)在R上是增函数.(2)求实数a的取值范围,使f(x)恰好有三个单调区间.

题型:不详难度:来源:
若函数f(x)=ax3+x,
(1)求实数a的取值范围,使f(x)在R上是增函数.
(2)求实数a的取值范围,使f(x)恰好有三个单调区间.
答案
求导函数,可得f′(x)=3ax2+1,
(1)f(x)在R上是增函数,∴f′(x)=3ax2+1≥0在R上恒成立,
当x=0时,a∈R;当x≠0时,3a≥-
1
x2
,∴a≥0;
综上知,a≥0;
(2)f(x)恰好有三个单调区间,则f′(x)=3ax2+1=0有两个不相等的实数根,
∴△=0-12a>0
∴a<0
举一反三
若曲线y=x3+px+16与x轴相切,则实数p的值为(  )
A.12B.-12C.3
34

D.-3
34

题型:不详难度:| 查看答案
设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)求f (x)的单调区间;
(Ⅱ)若当x∈[
1
e
-1,e-1]
时,不等式f (x)<m恒成立,求实数m的取值范围;
(Ⅲ)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.
题型:武汉模拟难度:| 查看答案
已知函数f(x)=
1
4
x4-
4
3
x3+2x2,则f(x)(  )
A.有极大值,无极小值B.有极大值,有极小值
C.有极小值,无极大值D.无极小值,无极大值
题型:不详难度:| 查看答案
已知函数f(x)=xlnx.
(I)求函数f(x)的单调递减区间;
(II)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求实数a的取值范围;
(III)过点A(-e-2,0)作函数y=f(x)图象的切线,求切线方程.
题型:不详难度:| 查看答案
已知x∈R,函数f(x)=ax3+bx2+cx+d在x=0处取得极值,曲线y=f(x)过原点O(0,0)和点P(-1,2).若曲线y=f(x)在点P处的切线l与直线y=2x的夹角为45°,且直线l的倾斜角θ∈(
π
2
,π),
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函数y=f(x)在区间[2m-1,m+1]上是增函数,求实数m的取值范围;
(Ⅲ)若x1、x2∈[-1,1],求证:f(x1)-f(x2)≤4.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.