设函数f(x)=ex-ax-2(Ⅰ)求f(x)的单调区间(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f´(x)+x+1>0,求k的最大值.
题型:黑龙江难度:来源:
设函数f(x)=ex-ax-2 (Ⅰ)求f(x)的单调区间 (Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f´(x)+x+1>0,求k的最大值. |
答案
(I)函数f(x)=ex-ax-2的定义域是R,f′(x)=ex-a, 若a≤0,则f′(x)=ex-a≥0,所以函数f(x)=ex-ax-2在(-∞,+∞)上单调递增. 若a>0,则当x∈(-∞,lna)时,f′(x)=ex-a<0;当x∈(lna,+∞)时,f′(x)=ex-a>0;所以,f(x)在(-∞,lna)单调递减,在(lna,+∞)上单调递增. (II)由于a=1,所以,(x-k) f´(x)+x+1=(x-k) (ex-1)+x+1 故当x>0时,(x-k) f´(x)+x+1>0等价于k<+x(x>0)① 令g(x)=+x,则g′(x)=+1= 由(I)知,函数h(x)=ex-x-2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=ex-x-2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2) 当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3) 由于①式等价于k<g(α),故整数k的最大值为2 |
举一反三
已知函数f(x)=x3+ax2+bx+c在x=1与x=-时,都取得极值. (1)求a,b的值; (2)若f(-1)=,求f(x)的单调区间和极值; (3)若对x∈[-1,2]都有f(x)<恒成立,求c的取值范围. |
函数f(x)=(1-x)•ex的单调递增区间是______. |
设函数f(x)=x3+bx2+cx(x∈R),若g(x)=f(x)-f′(x)是奇函数 (1)求b,c的值; (2)求g(x)的单调区间. |
已知函数f(x)=x2+2x+alnx. (1)若函数f(x)在区间(0,1)上是单调函数,求实数a的取值范围; (2)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围. |
已知函数f(x)=Inx-(a∈R,a≠0). (1)当a=-1时,讨论f(x)在定义域上的单调性; (2)若f(x)在区间[1,e]上的最小值是,求实数a的值. |
最新试题
热门考点