函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f"(x)<0则f(0),f(12),f(3)的大小关系是(要求用“<

函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f"(x)<0则f(0),f(12),f(3)的大小关系是(要求用“<

题型:不详难度:来源:
函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f"(x)<0则f(0),f(
1
2
)
,f(3)的大小关系是(要求用“<”连接)______.
答案
由f(x)=f(2-x)可知,f(x)的图象关于x=1对称,
根据题意又知x∈(-∞,1)时,f"(x)>0,此时f(x)为增函数,
x∈(1,+∞)时,f"(x)<0<0,f(x)为减函数,
所以f(3)=f(-1)<f(0)<f(
1
2
),即c<a<b,
故选B.
举一反三
函数f(x)=x3+x2+mx+1是R上的单调函数,则m的取值范围为______.
题型:不详难度:| 查看答案
已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2
(1)求a,b的值;
(2)若方程f(x)+m=0在[
1
e
,e]
内有两个不等实根,求实数m的取值范围(其中e为自然对数的底,e≈2.7);
(3)令g(x)=f(x)-nx,如果g(x)图象与x轴交于A(x1,0),B(x2,0),x1<x2,AB中点为C(x0,0),求证:g′(x0)≠0.
题型:江苏模拟难度:| 查看答案
已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a≤0.
(Ⅰ)求f(x)的极值;
(Ⅱ)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.
题型:西城区一模难度:| 查看答案
若函数f(x)的导函数为f′(x)=2x-4,则函数f(x-1)的单调递减区间是______.
题型:不详难度:| 查看答案
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.