已知函数f(x)=lnx,,设F(x)=f(x)+g(x)。(Ⅰ)当a=1时,求函数F(x)的单调区间;(Ⅱ)若以函数y=F(x)(0<x≤3)图象上任意一点为

已知函数f(x)=lnx,,设F(x)=f(x)+g(x)。(Ⅰ)当a=1时,求函数F(x)的单调区间;(Ⅱ)若以函数y=F(x)(0<x≤3)图象上任意一点为

题型:0111 月考题难度:来源:
已知函数f(x)=lnx,,设F(x)=f(x)+g(x)。
(Ⅰ)当a=1时,求函数F(x)的单调区间;
(Ⅱ)若以函数y=F(x)(0<x≤3)图象上任意一点为切点的切线斜率恒成立,求实数a的最小值。
答案
解:(Ⅰ)由已知,可得
函数的定义域为

可得在区间单调递增;
可得在(0,1)上单调递减。
(Ⅱ)由题意,知对任意恒成立,
即有对任意恒成立,即


所以,实数a的最小值为
举一反三
函数在(-∞,+∞)上单调,则a的取值范围是 [     ]
A、(-∞,-]∪(1,]
B、[-,-1)∪[,+∞)
C、(1,]
D、[,+∞)
题型:0103 期末题难度:| 查看答案
在(-1,+∞)上是减函数,则b的取值范围是[     ]
A.[-1,+∞)
B.(-∞,-1)
C.(-1,+∞)
D.(-∞,-1]
题型:0103 期末题难度:| 查看答案
函数f(x)=2x2-lnx的递增区间是[     ]
A.
B.
C.
D.
题型:0103 期末题难度:| 查看答案

设函数f(x)=x(ex-1)-ax2
(Ⅰ)若,求f(x)的单调区间;
(Ⅱ)若当x≥0时,f(x)≥0,求a的取值范围。

题型:0103 期末题难度:| 查看答案
已知函数(a,b∈R),
(1)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求实数a、b 的值;
(2)若f(x)在(-1,1)上不单调,求实数a的取值范围。
题型:0103 期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.