已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为______.
题型:不详难度:来源:
已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为______. |
答案
由已知,f′(x)=6x2-12x,有6x2-12x≥0得x≥2或x≤0, 因此当x∈[2,+∞),(-∞,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数, 又因为x∈[-2,2], 所以得 当x∈[-2,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数, 所以f(x)max=f(0)=m=3,故有f(x)=2x3-6x2+3 所以f(-2)=-37,f(2)=-5 因为f(-2)=-37<f(2)=-5,所以函数f(x)的最小值为f(-2)=-37. 答案为:-37 |
举一反三
如图,ABCD是一块边长为2a的正方形铁板,剪掉四个阴影部分的小正方形,沿虚线折叠后,焊接成一个无盖的长方体水箱,若水箱的高度x与底面边长的比不超过常数k(k>0). (1)写出水箱的容积V与水箱高度x的函数表达式,并求其定义域; (2)当水箱高度x为何值时,水箱的容积V最大,并求出其最大值. |
时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y(单位:千套)与销售价格x(单位:元/套)满足的关系式y=m | x-2 | 已知a>0,函数f(x)=+lnx-1(其中e为自然对数的底数). (Ⅰ)求函数f(x)在区间(0,e]上的最小值; (Ⅱ)设g(x)=x2-2bx+4,当a=1时,若对任意x1∈(0,e),存在x2∈[1,3],使得f(x1)≥g(x2),求实数b的取值范围. | 已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数,则函数F(x)=f(x)f′(x)+f2(x)的最大值是( ) | f(x)=x3-x2+2在区间[-1,3]上的最大值是( ) |
最新试题
热门考点
|