已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (1)求函数f(x)在[t,t+2](t>0)上的最小值; (2)对一切x∈(0,+∞),2f(x)≥g(

已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (1)求函数f(x)在[t,t+2](t>0)上的最小值; (2)对一切x∈(0,+∞),2f(x)≥g(

题型:河南省期末题难度:来源:
已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有成立.
答案
解:(1)f "(x)=lnx+1,当,f"(x)<0,f(x)单调递减,
,f"(x)>0,f(x)单调递增.
,t无解;
,即时,
,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt;∴
(2)2xlnx≥﹣x2+ax﹣3,则
,则,x∈(0,1),
h"(x)<0,h(x)单调递减,x∈(1,+∞),h"(x)>0,h(x)单调递增,
所以h(x)min=h(1)=4
因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4;
(3)问题等价于证明
由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是,当且仅当时取到
,则

易得
当且仅当x=1时取到,从而对一切x∈(0,+∞),都有成立.
举一反三
设a为实数,函数f(x)=ex﹣2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2﹣1且x>0时,ex>x2﹣2ax+1.
题型:山东省期末题难度:| 查看答案
已知函数f(x)=ln(ex+k)(k为常数)是实数集R上的奇函数
(1)求k的值
(2)若函数g(x)=λf(x)+sinx是区间[﹣1,1]上的减函数,且g(x)≤t2+λt+1在
x∈[﹣1,1]上恒成立,求t的取值范围
(3)讨论关于x的方程的根的个数.
题型:天津月考题难度:| 查看答案
工厂生产某种产品,次品率p与日产量x(万件)间的关系为(c为常数,且0<c<6),已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.
(1)将日盈利额y(万元)表示为日产量x(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=
题型:山东省期末题难度:| 查看答案
已知f(x)=lnx+x2﹣bx.
(1)若函数f(x)在其定义域内是增函数,求b的取值范围;
(2)当b=﹣1时,设g(x)=f(x)﹣2x2,求证函数g(x)只有一个零点.
题型:山东省期末题难度:| 查看答案
已知函数f(x)=x3﹣ax2+(a2﹣1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y﹣3=0.
(1)求a,b的值;
(2)求函数f(x)的单调区间,并求出f(x)在区间[﹣2,4]上的最大值.
题型:山东省期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.