已知函数f(x)=x3﹣3ax2﹣9a2x+a3.(1)设a=1,求函数f(x)的极值;(2)若,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a

已知函数f(x)=x3﹣3ax2﹣9a2x+a3.(1)设a=1,求函数f(x)的极值;(2)若,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a

题型:河北省月考题难度:来源:
已知函数f(x)=x3﹣3ax2﹣9a2x+a3
(1)设a=1,求函数f(x)的极值;
(2)若,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a的取值范围.
答案
解:(1)当a=1时,对函数f(x)求导数,得f′(x)=3x2﹣6x﹣9.
令f′(x)=0,解得x1=﹣1,x2=3.
列表讨论f(x),f′(x)的变化情况:
举一反三
题型:湖南省月考题难度:| 查看答案
题型:湖南省月考题难度:| 查看答案
题型:湖南省月考题难度:| 查看答案
题型:湖南省月考题难度:| 查看答案
题型:江西省月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.


已知a>0,函数f(x)=lnx﹣ax2,x>0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β)证明:
已知函数f(x)=x2﹣alnx在(1,2]是增函数,在(0,1)为减函数.
(1)求f(x)、g(x)的表达式;
(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解;
(3)当b>﹣1时,若在x∈(0,1]内恒成立,求b的取值范围.
已知在函数f(x)=mx3﹣x的图象上以N(1,n)为切点的切线的倾斜角为
(1)求m、n的值;
(2)是否存在最小的正整数k,使得不等式f(x)≤k﹣1995对于x∈[﹣1,3]恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由.
已知函数f(x)=,g(x)=alnx,a∈R.
(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2)设函数h(x)=f(x)﹣g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;
(3)对(2)中的φ(a),证明:当a∈(0,+∞)时,φ(a)≤1.
函数上的最大值是(    )