设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f"(x)的图象经过点,如图所示,(1)求f(x)的解析式;(2)若对x∈[﹣3,3]都有f(x)≥

设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f"(x)的图象经过点,如图所示,(1)求f(x)的解析式;(2)若对x∈[﹣3,3]都有f(x)≥

题型:广东省月考题难度:来源:
设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f"(x)的图象经过点,如图所示,
(1)求f(x)的解析式;
(2)若对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求实数m的取值范围.
答案
解:(1)∵f"(x)=3ax2+2bx+c,且y=f"(x)的图象经过点(﹣2,0),

∴f(x)=ax3+2ax2﹣4ax,
由图象可知函数y=f(x)在(﹣∞,﹣2)上单调递减,在上单调递增,在上单调递减,
由f(x)极小值=f(﹣2)=a(﹣2)3+2a(﹣2)2﹣4a(﹣2)=﹣8,解得a=﹣1
∴f(x)=﹣x3﹣2x2+4x
(2)要使对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,
只需f(x)min≥m2﹣14m即可.
由(1)可知函数y=f(x)在[﹣3,2)上单调递减,在上单调递增,在上单调递减
且f(﹣2)=﹣8,f(3)=﹣33﹣2×32+4×3=﹣33<﹣8
∴f(x)min=f(3)=﹣33
﹣33≥m2-14m?3≤m≤11
故所求的实数m的取值范围为{m|3≤m≤11}.
举一反三
温州某私营公司生产一种产品,根据历年的情况可知,生产该产品每天的固定成本为14000元,每生产一件该产品,成本增加210元.已知该产品的日销售量f(x)与产量x之间的关系式为
每件产品的售价g(x)与产量x之间的关系式为
(Ⅰ)写出该公司的日销售利润Q(x)与产量x之间的关系式;
(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.
题型:广西自治区月考题难度:| 查看答案
若函数f(x)=x3﹣3x+1在闭区间[﹣3,0]上的最大值,最小值分别为M,m,则M+m=(    )。
题型:河北省月考题难度:| 查看答案
已知函数f(x)=x3﹣3ax2﹣9a2x+a3
(1)设a=1,求函数f(x)的极值;
(2)若,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a的取值范围.
题型:河北省月考题难度:| 查看答案
已知a>0,函数f(x)=lnx﹣ax2,x>0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β)证明:
题型:湖南省月考题难度:| 查看答案
已知函数f(x)=x2﹣alnx在(1,2]是增函数,在(0,1)为减函数.
(1)求f(x)、g(x)的表达式;
(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解;
(3)当b>﹣1时,若在x∈(0,1]内恒成立,求b的取值范围.
题型:湖南省月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.