请您设计一个帐篷,它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最

请您设计一个帐篷,它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最

题型:江苏高考真题难度:来源:
请您设计一个帐篷,它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?
答案
解:设OO1为xm,则
设题设可得正六棱锥底面边长为(单位:m)
于是底面正六边形的面积为(单位:m2
帐篷的体积为(单位:m3
求导数,得
,解得(不合题意,舍去),x=2
时,为增函数
时,为减函数
所以当x=2时,V(x)最大
答:当OO1为2m时,帐逢的体积最大。
举一反三
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=(0<x≤120)。已知甲、乙两地相距100千米。
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
题型:福建省高考真题难度:| 查看答案
已知函数f(x)=-x2+8x,g(x)=6lnx+m。
(1)求f(x)在区间[t,t+1]上的最大值h(t);
(2)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由。
题型:福建省高考真题难度:| 查看答案
设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围。
题型:高考真题难度:| 查看答案
对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有[     ]
A.f(0)+f(2)<2f(1)
B.f(0)+f(2)≤2f(1)
C.f(0)+f(2)≥f(1)
D.f(0)+f(2)>2f(1)
题型:江西省高考真题难度:| 查看答案
已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m,则M-m=(    )。
题型:江苏高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.